python/stan/unix/prophet.stan (122 lines of code) (raw):
// Copyright (c) Facebook, Inc. and its affiliates.
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
functions {
matrix get_changepoint_matrix(vector t, vector t_change, int T, int S) {
// Assumes t and t_change are sorted.
matrix[T, S] A;
row_vector[S] a_row;
int cp_idx;
// Start with an empty matrix.
A = rep_matrix(0, T, S);
a_row = rep_row_vector(0, S);
cp_idx = 1;
// Fill in each row of A.
for (i in 1:T) {
while ((cp_idx <= S) && (t[i] >= t_change[cp_idx])) {
a_row[cp_idx] = 1;
cp_idx = cp_idx + 1;
}
A[i] = a_row;
}
return A;
}
// Logistic trend functions
vector logistic_gamma(real k, real m, vector delta, vector t_change, int S) {
vector[S] gamma; // adjusted offsets, for piecewise continuity
vector[S + 1] k_s; // actual rate in each segment
real m_pr;
// Compute the rate in each segment
k_s = append_row(k, k + cumulative_sum(delta));
// Piecewise offsets
m_pr = m; // The offset in the previous segment
for (i in 1:S) {
gamma[i] = (t_change[i] - m_pr) * (1 - k_s[i] / k_s[i + 1]);
m_pr = m_pr + gamma[i]; // update for the next segment
}
return gamma;
}
vector logistic_trend(
real k,
real m,
vector delta,
vector t,
vector cap,
matrix A,
vector t_change,
int S
) {
vector[S] gamma;
gamma = logistic_gamma(k, m, delta, t_change, S);
return cap .* inv_logit((k + A * delta) .* (t - (m + A * gamma)));
}
// Linear trend function
vector linear_trend(
real k,
real m,
vector delta,
vector t,
matrix A,
vector t_change
) {
return (k + A * delta) .* t + (m + A * (-t_change .* delta));
}
// Flat trend function
vector flat_trend(
real m,
int T
) {
return rep_vector(m, T);
}
}
data {
int T; // Number of time periods
int<lower=1> K; // Number of regressors
vector[T] t; // Time
vector[T] cap; // Capacities for logistic trend
vector[T] y; // Time series
int S; // Number of changepoints
vector[S] t_change; // Times of trend changepoints
matrix[T,K] X; // Regressors
vector[K] sigmas; // Scale on seasonality prior
real<lower=0> tau; // Scale on changepoints prior
int trend_indicator; // 0 for linear, 1 for logistic, 2 for flat
vector[K] s_a; // Indicator of additive features
vector[K] s_m; // Indicator of multiplicative features
}
transformed data {
matrix[T, S] A;
A = get_changepoint_matrix(t, t_change, T, S);
}
parameters {
real k; // Base trend growth rate
real m; // Trend offset
vector[S] delta; // Trend rate adjustments
real<lower=0> sigma_obs; // Observation noise
vector[K] beta; // Regressor coefficients
}
transformed parameters {
vector[T] trend;
if (trend_indicator == 0) {
trend = linear_trend(k, m, delta, t, A, t_change);
} else if (trend_indicator == 1) {
trend = logistic_trend(k, m, delta, t, cap, A, t_change, S);
} else if (trend_indicator == 2) {
trend = flat_trend(m, T);
}
}
model {
//priors
k ~ normal(0, 5);
m ~ normal(0, 5);
delta ~ double_exponential(0, tau);
sigma_obs ~ normal(0, 0.5);
beta ~ normal(0, sigmas);
// Likelihood
y ~ normal(
trend
.* (1 + X * (beta .* s_m))
+ X * (beta .* s_a),
sigma_obs
);
}