tools/python/file_extract.py (793 lines of code) (raw):
#! /usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import binascii
import re
import string
import struct
import sys
from io import BytesIO, StringIO
SEEK_SET = 0
SEEK_CUR = 1
SEEK_END = 2
def dump_memory(base_addr, data, num_per_line, outfile):
data_len = len(data)
hex_string = binascii.hexlify(data)
addr = base_addr
ascii_str = ""
i = 0
concat = None
if data_len > 0:
if isinstance(hex_string[0], int):
concat = lambda a, b: chr(a) + chr(b) # noqa: E731
else:
concat = lambda a, b: a + b # noqa: E731
while i < data_len:
outfile.write("0x%8.8x: " % (addr + i))
bytes_left = data_len - i
if bytes_left >= num_per_line:
curr_data_len = num_per_line
else:
curr_data_len = bytes_left
hex_start_idx = i * 2
hex_end_idx = hex_start_idx + curr_data_len * 2
curr_hex_str = hex_string[hex_start_idx:hex_end_idx]
# 'curr_hex_str' now contains the hex byte string for the
# current line with no spaces between bytes
t = iter(curr_hex_str)
# Print hex bytes separated by space
outfile.write(" ".join(concat(a, b) for a, b in zip(t, t)))
# Print two spaces
outfile.write(" ")
# Calculate ASCII string for bytes into 'ascii_str'
ascii_str = ""
for j in range(i, i + curr_data_len):
ch = data[j]
if isinstance(ch, int):
ch = chr(ch)
if ch in string.printable and ch not in string.whitespace:
ascii_str += "%c" % (ch)
else:
ascii_str += "."
# Print ASCII representation and newline
outfile.write(ascii_str)
i = i + curr_data_len
outfile.write("\n")
def last_char_is_newline(s):
if s:
return s[-1] == "\n"
return False
def hex_escape(s):
return "".join(escape(c) for c in s)
def escape(c):
if isinstance(c, int):
c = chr(c)
if c in string.printable:
if c == "\n":
return "\\n"
if c == "\t":
return "\\t"
if c == "\r":
return "\\r"
return c
c = ord(c)
if c <= 0xFF:
return "\\x" + "%02.2x" % (c)
elif c <= "\uffff":
return "\\u" + "%04.4x" % (c)
else:
return "\\U" + "%08.8x" % (c)
class FileEncode:
"""Encode binary data to a file"""
def __init__(self, f, b="=", addr_size=0):
"""Initialize with an open binary file and optional byte order and
address byte size.
"""
self.file = f
self.addr_size = addr_size
self.set_byte_order(b)
def align_to(self, align):
curr_pos = self.file.tell()
delta = curr_pos % align
if delta:
pad = align - delta
if pad != 0:
self.seek(pad, SEEK_CUR)
def seek(self, offset, whence=SEEK_SET):
if self.file:
return self.file.seek(offset, whence)
raise ValueError
def tell(self):
if self.file:
return self.file.tell()
raise ValueError
def set_byte_order(self, b):
'''Set the byte order, valid values are "big", "little", "swap",
"native", "<", ">", "@", "="'''
if b == "big":
self.byte_order = ">"
elif b == "little":
self.byte_order = "<"
elif b == "swap":
# swap what ever the current byte order is
if struct.pack("H", 1).startswith("\x00"):
self.byte_order = "<"
else:
self.byte_order = ">"
elif b == "native":
self.byte_order = "="
elif b == "<" or b == ">" or b == "@" or b == "=":
self.byte_order = b
else:
raise ValueError("Invalid byte order specified: '%s'" % (b))
def put_c_string(self, value):
self.file.write(value)
self.put_sint8(0)
def put_sint8(self, value):
"""Encode a int8_t into the file at the current file position"""
self.file.write(struct.pack(self.byte_order + "b", value))
def put_uint8(self, value):
"""Encode a uint8_t into the file at the current file position"""
self.file.write(struct.pack(self.byte_order + "B", value))
def put_sint16(self, value):
"""Encode a int16_t into the file at the current file position"""
self.file.write(struct.pack(self.byte_order + "h", value))
def put_uint16(self, value):
"""Encode a uint16_t into the file at the current file position"""
self.file.write(struct.pack(self.byte_order + "H", value))
def put_sint32(self, value):
"""Encode a int32_t into the file at the current file position"""
self.file.write(struct.pack(self.byte_order + "i", value))
def put_uint32(self, value):
"""Encode a uint32_t into the file at the current file position"""
self.file.write(struct.pack(self.byte_order + "I", value))
def put_sint64(self, value):
"""Encode a int64_t into the file at the current file position"""
self.file.write(struct.pack(self.byte_order + "q", value))
def put_uint64(self, value):
"""Encode a uint64_t into the file at the current file position"""
self.file.write(struct.pack(self.byte_order + "Q", value))
def put_uleb128(self, value):
"""Encode a ULEB128 into the file at the current file position"""
while value >= 0x80:
self.put_uint8(0x80 | (value & 0x7F))
value >>= 7
self.put_uint8(value)
def put_sleb128(self, value):
if value < 0:
uvalue = (1 - value) * 2
else:
uvalue = value * 2
while True:
byte = value & 0x7F
value >>= 7
uvalue >>= 7
if uvalue != 0:
byte = byte | 0x80
self.put_uint8(byte)
if uvalue == 0:
break
def put_address(self, value):
if self.addr_size == 0:
raise ValueError
self.put_uint_size(self.addr_size, value)
def put_uint_size(self, size, value):
"""Encode a unsigned integer into the file at the current file
position as an integer whose byte size is "size"."""
if size == 1:
return self.put_uint8(value)
if size == 2:
return self.put_uint16(value)
if size == 4:
return self.put_uint32(value)
if size == 8:
return self.put_uint64(value)
print("error: integers of size %u are not supported" % (size))
def fixup_uint_size(self, size, value, offset):
"""Fixup one unsigned integer in the file at "offset" bytes from
the start of the file. The current file position will be saved and
restored."""
saved_offset = self.file.tell()
self.file.seek(offset)
self.put_uint_size(size, value)
self.file.seek(saved_offset)
class FileExtract:
"""Decode binary data from a file"""
def __init__(self, f, b="=", addr_size=0):
"""Initialize with an open binary file and optional byte order and
address byte size
"""
self.file = f
self.offsets = []
self.addr_size = addr_size
self.set_byte_order(b)
def get_size(self):
pos = self.file.tell()
self.file.seek(0, SEEK_END)
len = self.file.tell()
self.file.seek(pos, SEEK_SET)
return len
def align_to(self, align):
curr_pos = self.file.tell()
delta = curr_pos % align
if delta:
pad = align - delta
if pad != 0:
self.seek(pad, SEEK_CUR)
def get_addr_size(self):
return self.addr_size
def set_addr_size(self, addr_size):
self.addr_size = addr_size
def set_byte_order(self, b):
'''Set the byte order, valid values are "big", "little", "swap",
"native", "<", ">", "@", "="'''
if b == "big":
self.byte_order = ">"
elif b == "little":
self.byte_order = "<"
elif b == "swap":
# swap what ever the current byte order is
if struct.pack("H", 1).startswith("\x00"):
self.byte_order = "<"
else:
self.byte_order = ">"
elif b == "native":
self.byte_order = "="
elif b == "<" or b == ">" or b == "@" or b == "=":
self.byte_order = b
else:
print("Invalid byte order specified: '%s'" % (b))
def seek(self, offset, whence=SEEK_SET):
if self.file:
return self.file.seek(offset, whence)
raise ValueError
def tell(self):
if self.file:
return self.file.tell()
raise ValueError
def read_data(self, byte_size):
bytes = self.read_size(byte_size)
if len(bytes) == byte_size:
return FileExtract(
StringIO(bytes.decode("utf-8")), self.byte_order, self.addr_size
)
return None
def read_size(self, byte_size):
s = self.file.read(byte_size)
if len(s) != byte_size:
return None
return s
def push_offset_and_seek(self, offset, whence=SEEK_SET):
'''Push the current file offset and seek to "offset"'''
self.offsets.append(self.file.tell())
self.file.seek(offset, whence)
def pop_offset_and_seek(self):
"""Pop a previously pushed file offset and set the file position."""
if len(self.offsets) > 0:
self.file.seek(self.offsets.pop(), SEEK_SET)
def get_sint8(self, fail_value=0):
"""Extract a int8_t from the current file position."""
s = self.read_size(1)
return self._unpack("b", s) if s else fail_value
def get_uint8(self, fail_value=0):
"""Extract and return a uint8_t from the current file position."""
s = self.read_size(1)
return self._unpack("B", s) if s else fail_value
def get_sint16(self, fail_value=0):
"""Extract a int16_t from the current file position."""
s = self.read_size(2)
return self._unpack("h", s) if s else fail_value
def get_uint16(self, fail_value=0):
"""Extract a uint16_t from the current file position."""
s = self.read_size(2)
return self._unpack("H", s) if s else fail_value
def get_sint32(self, fail_value=0):
"""Extract a int32_t from the current file position."""
s = self.read_size(4)
return self._unpack("i", s) if s else fail_value
def get_uint32(self, fail_value=0):
"""Extract a uint32_t from the current file position."""
s = self.read_size(4)
return self._unpack("I", s) if s else fail_value
def get_sint64(self, fail_value=0):
"""Extract a int64_t from the current file position."""
s = self.read_size(8)
return self._unpack("q", s) if s else fail_value
def get_uint64(self, fail_value=0):
"""Extract a uint64_t from the current file position."""
s = self.read_size(8)
return self._unpack("Q", s) if s else fail_value
def _unpack(self, format_suffix, s):
return struct.unpack(self.byte_order + format_suffix, s)[0]
def get_address(self, fail_value=0):
if self.addr_size == 0:
print("error: invalid addr size...")
raise ValueError
else:
return self.get_uint_size(self.addr_size, fail_value)
def get_sint_size(self, size, fail_value=0):
"""Extract a signed integer from the current file position whose
size is "size" bytes long."""
if size == 1:
return self.get_sint8(fail_value)
if size == 2:
return self.get_sint16(fail_value)
if size == 4:
return self.get_sint32(fail_value)
if size == 8:
return self.get_sint64(fail_value)
print("error: integer of size %u is not supported" % (size))
return fail_value
def get_uint_size(self, size, fail_value=0):
"""Extract a unsigned integer from the current file position whose
size is "size" bytes long."""
if size == 1:
return self.get_uint8(fail_value)
if size == 2:
return self.get_uint16(fail_value)
if size == 4:
return self.get_uint32(fail_value)
if size == 8:
return self.get_uint64(fail_value)
print("error: integer of size %u is not supported" % (size))
return fail_value
def get_fixed_length_c_string(
self, n, fail_value="", isprint_only_with_space_padding=False
):
"""Extract a fixed length C string from the current file position."""
s = self.read_size(n)
if s:
(cstr,) = struct.unpack(self.byte_order + ("%i" % n) + "s", s)
# Strip trialing NULLs
cstr = cstr.strip(b"\0")
if isprint_only_with_space_padding:
for c in cstr:
if c in string.printable or ord(c) == 0:
continue
return fail_value
return cstr
else:
return fail_value
def get_c_string(self):
"""Extract a NULL terminated C string from the current position."""
cstr = ""
byte = self.get_uint8()
while byte != 0:
cstr += "%c" % byte
byte = self.get_uint8()
return cstr
def get_n_sint8(self, n, fail_value=0):
"""Extract "n" int8_t values from the current position as a list."""
s = self.read_size(n)
if s:
return struct.unpack(self.byte_order + ("%u" % n) + "b", s)
else:
return (fail_value,) * n
def get_n_uint8(self, n, fail_value=0):
"""Extract "n" uint8_t values from the current position as a list."""
s = self.read_size(n)
if s:
return struct.unpack(self.byte_order + ("%u" % n) + "B", s)
else:
return (fail_value,) * n
def get_n_sint16(self, n, fail_value=0):
"""Extract "n" int16_t values from the current position as a list."""
s = self.read_size(2 * n)
if s:
return struct.unpack(self.byte_order + ("%u" % n) + "h", s)
else:
return (fail_value,) * n
def get_n_uint16(self, n, fail_value=0):
"""Extract "n" uint16_t values from the current position as a list."""
s = self.read_size(2 * n)
if s:
return struct.unpack(self.byte_order + ("%u" % n) + "H", s)
else:
return (fail_value,) * n
def get_n_sint32(self, n, fail_value=0):
"""Extract "n" int32_t values from the current position as a list."""
s = self.read_size(4 * n)
if s:
return struct.unpack(self.byte_order + ("%u" % n) + "i", s)
else:
return (fail_value,) * n
def get_n_uint32(self, n, fail_value=0):
"""Extract "n" uint32_t values from the current position as a list."""
s = self.read_size(4 * n)
if s:
return struct.unpack(self.byte_order + ("%u" % n) + "I", s)
else:
return (fail_value,) * n
def get_n_sint64(self, n, fail_value=0):
"""Extract "n" int64_t values from the current position as a list."""
s = self.read_size(8 * n)
if s:
return struct.unpack(self.byte_order + ("%u" % n) + "q", s)
else:
return (fail_value,) * n
def get_n_uint64(self, n, fail_value=0):
"""Extract "n" uint64_t values from the current position as a list."""
s = self.read_size(8 * n)
if s:
return struct.unpack(self.byte_order + ("%u" % n) + "Q", s)
else:
return (fail_value,) * n
def get_uleb128p1(self, fail_value=0):
return self.get_uleb128(fail_value) - 1
def get_uleb128(self, fail_value=0):
"""Extract a ULEB128 number"""
byte = self.get_uint8()
# Quick test for single byte ULEB
if byte & 0x80:
result = byte & 0x7F
shift = 7
while byte & 0x80:
byte = self.get_uint8()
result |= (byte & 0x7F) << shift
shift += 7
return result
else:
return byte # Simple one byte ULEB128 value...
def get_sleb128(self, fail_value=0):
result = 0
shift = 0
size = 64
byte = 0
bytecount = 0
while 1:
bytecount += 1
byte = self.get_uint8()
result |= (byte & 0x7F) << shift
shift += 7
if (byte & 0x80) == 0:
break
# Sign bit of byte is 2nd high order bit (0x40)
if shift < size and (byte & 0x40):
result |= -(1 << shift)
return result
def dump(self, start=0, end=-1):
if end == -1:
self.seek(start, SEEK_END) # Seek to end to get size
n = self.tell() - start
else:
n = end - start
self.seek(start, SEEK_SET)
bytes = self.read_size(n)
dump_memory(0, bytes, 32, sys.stdout)
def main():
uleb_tests = [
(struct.pack("B", 0x02), 2),
(struct.pack("B", 0x7F), 127),
(struct.pack("2B", 0x80, 0x01), 128),
(struct.pack("2B", 0x81, 0x01), 129),
(struct.pack("2B", 0x82, 0x01), 130),
(struct.pack("2B", 0xB9, 0x64), 12857),
]
sleb_tests = [
(struct.pack("B", 0x02), 2),
(struct.pack("B", 0x7E), -2),
(struct.pack("2B", 0xFF, 0x00), 127),
(struct.pack("2B", 0x81, 0x7F), -127),
(struct.pack("2B", 0x80, 0x01), 128),
(struct.pack("2B", 0x80, 0x7F), -128),
(struct.pack("2B", 0x81, 0x01), 129),
(struct.pack("2B", 0xFF, 0x7E), -129),
]
num_errors = 0
print("Running unit tests...", end="")
for (s, check_n) in sleb_tests:
e = FileExtract(BytesIO(s))
n = e.get_sleb128()
if n != check_n:
num_errors += 1
print("\nerror: sleb128 extraction failed for %i (got %i)" % (check_n, n))
dump_memory(0, s, 32, sys.stdout)
for (s, check_n) in uleb_tests:
e = FileExtract(BytesIO(s))
n = e.get_uleb128()
if n != check_n:
num_errors += 1
print("\nerror: uleb128 extraction failed for %i (got %i)" % (check_n, n))
dump_memory(0, s, 32, sys.stdout)
if num_errors == 0:
print("ok")
else:
print("%u errors" % (num_errors))
print
if __name__ == "__main__":
main()
class AutoParser:
"""A class that enables easy parsing of binary files.
This class is designed to be sublcassed and clients must provide a list of
items in the constructor. Each item in the items list is a dictionary that
describes each attribute that should be added to the class when it is
decoded. A quick example for a C structure:
struct load_command {
uint32_t cmd; /* type of load command */
uint32_t cmdsize; /* total size of command in bytes */
};
The python code would look like:
class load_command(file_extract.AutoParser):
items = [
{ 'name':'cmd', 'type':'u32' },
{ 'name':'cmdsize', 'type':'u32'},
]
def __init__(self, data):
AutoParser.__init__(self, self.items, data)
Decoding a single load_command from a file involves opening a file and
creating a FileExtract object, and then decoding the load_command object:
file = open(path)
data = file_extract.FileExtract(file, '=', 4)
lc = load_command(data)
The 'lc' object now has two properties:
lc.cmd
lc.cmdsize
Item dictionaries are very easy to define and have quite a many options
to ensure it is very easy to parse a binary file by defining many
subclasses of file_extract.AutoParser and combining them together.
Item dictionaries can contain the following keys:
KEY NAME DESCRIPTION
============== ============================================================
'name' A string name of the attribute to add to this class when
decoding. If an item has no name, it will not be added to
this object when it is being decoded. Omitting the name is
handy when you have padding where you might need to decode
some bytes that are part of the on disk representation of
the binary object, but don't need the value represented
in the object itself.
'type' A string name for the type of the data to decode. See
"Builin Types" table below for valid typename values. Either
'class' An AutoParser sublcass class that will be used to decode
this item by constructing it with the data at the current
offset. This allows you to compose a AutoParser object
that is contained within another AutoParser object.
'condition' A function that takes two arguments: the current AutoParser
object that is in the process of being decoded and the
FileExtract object. The function returns True if this item
is present and should be decoded, and False if it should be
skipped. The condition is evaluated before the value is
decoded and stops the type/class/decode from decoding the
object. This can be used to only decode a value if a
previous attribute is a specific value. If a 'default' key
is present in the item dictionary, then the 'default' value
will be set as the the value for this item, otherwise the
attribute will not be added to this object:
condition_passed = item['condition'](AutoParser,
FileExtract)
'default' The default value for the current item that will be set if
the 'condition' callback function returns False.
'decode' A function that take a single file_extract.FileExtract
object argument and returns the value for this item.
value = item['decode'](FileExtract)
'align' An integer that gives the file offset alignment for this
item. This alignment can be any number and the file
position will be advanced to the next aligned offset if
needed prior to reading the value
'attr_count' A string that specifies the name of an attribute that has
already been decoded in this object. This indicates that the
value for this item is a list whose size is the integer
value of the attribute that was already decoded in a
previous item in this object.
'attr_offset' An integer that this item's value is contained within the
file at the specified offset. A seek will be performed on
the file before reading the value of this object. The file
position will be pushed onto a stack, a seek will be
performed, the item's value will be read, and then the file
position will be restored.
'attr_offset_size' A string name of an existing attribute that contains
the end offset of the data for this object. This is useful
when a list of items is contained in the file and the count
of the items is not specified, just the end offset. This is
often used with the 'attr_offset' key/value pair. The
type/class/decode will be continually called until the file
offset exceeds the offset + 'attr_offset_size'. String
tables are good example of when this is used as they string
table offset and size are often specified, but no the
number of strings in the string table.
'attr_offset_whence' A string name that specifies the type of seek to
perform on the 'attr_offset' value. This can be one of
"item", "file", "eof", "curr". "item" specifies the offset
is relative to the starting offset of this object. "file"
specifies that the offset is relative to the start of the
file. "eof" specifies that the offset is relative to the
end of tile. "curr" specifies that the offset is relative
to the current file position.
'validate' A function pointer that will be called after the value has
been extracted. The function is called with the extracted
value and should return None if the value is valid, or
return an error string if the value is not valid:
error = item['validate'](value)
if error:
raise ValueError(error)
'value_fixup' A function pointer that will be called after the item's
value has been decoded. The function will be called with one
argument, the decoded value, and returns the fixed value:
value = item['value_fixup'](value)
'debug' A string value that is printed prior to decoding the item's
value. The printed string value is prefixed by the current
file offset and allows debugging of where a value is being
decoded within the file. This helps debug the decoding of
items.
'switch' The string name of an attribute that was already decoded in
this object. The attribute value will be used as a key into
the 'cases' item key/value pair in the items supplied to the
AutoParser object. If the attribute value is not found in
the 'cases' dictionary, then 'default' will be used as the
key into the 'cases' dictionary. See 'cases' below. See
"Switch Example" below for more information.
'cases' A dictionary of values to items arrays. The 'switch' key
above specifies the name of an attribute in this object that
will be used as the key into the dictionary specified in
this key/value pair. The items that are found during the
lookup will then be decoded into this object. See
"Switch Example" below for more information.
'dump' A function pointer that is called to dump the value. The
function gets called with the value and the file:
def dump(value, file):
...
'dump_list' A function pointer that is called to dump a list of values.
The function gets called with the value and the file:
def dump_list(value, prefix, flat, file):
...
EXAMPLE 1
If you have a structure that has a count followed by an array of items
whose size is the value of count:
struct NumberArray {
uint32_t count;
uint32_t numbers[];
};
This would be respresented by the following items:
class NumberArray(AutoParser):
items = [
{'type':'u32', 'name':'count'},
{'type':'u32', 'name':'numbers', 'attr_count' : 'count'},
]
def __init__(self, data):
AutoParser.__init__(self, self.items, data)
The second item named 'numbers' will be decoded as a list of 'obj.count'
u32 values as the 'attr_count' specifies the name of an attribute that
has already been decoded into the object 'obj' and contains the count.
EXAMPLE 2
Sometimes a structure contains an offset and a count of objects. In the
example below SymtabInfo contains the offset and count of Symbol objects
that appear later in the file:
struct SymtabInfo {
uint32_t symtab_offset;
uint32_t num_symbols;
}
struct Symbol {
...;
};
The symbol table can be decoded by combinging the two things together
into the same object when decoding:
class Symbol(AutoParser):
...
class SymtabInfo(AutoParser):
items = [
{'type' : 'u32', 'name' : 'symtab_offset'},
{'type' : 'u32', 'name' : 'num_symbols' },
{'class' : Symbol,
'name' : 'symbols',
'attr_offset' : 'symtab_offset',
'attr_count' : 'num_symbols' }
]
def __init__(self, data):
AutoParser.__init__(self, self.items, data)
"""
type_regex = re.compile(r"([^\[]+)\[([0-9]+)\]")
default_formats = {
"u8": "%#2.2x",
"u16": "%#4.4x",
"u32": "%#8.8x",
"u64": "%#16.16x",
"addr": "%#16.16x",
"cstr": '"%s"',
}
read_value_callbacks = {
"u8": lambda data: data.get_uint8(),
"u16": lambda data: data.get_uint16(),
"u32": lambda data: data.get_uint32(),
"u64": lambda data: data.get_uint64(),
"s8": lambda data: data.get_sint8(),
"s16": lambda data: data.get_sint16(),
"s32": lambda data: data.get_sint32(),
"s64": lambda data: data.get_sint64(),
"addr": lambda data: data.get_address(),
"uleb": lambda data: data.get_uleb128(),
"sleb": lambda data: data.get_sleb128(),
"ulebp1": lambda data: data.get_uleb128p1(),
}
def __init__(self, items, data, context=None):
self.__offset = data.tell()
self.items = items
self.context = context # Any object you want to store for future usage
self.max_name_len = 0
self.extract_items(items, data)
self.__len = data.tell() - self.__offset
def __len__(self):
return self.__len
def get_list_header_lines(self):
"""When an object of this type is in a list, print out this string
before printing out any items"""
return None
def get_dump_header(self):
"""Override in subclasses to print this string out before any items
are dumped. This is a good place to put a description of the item
represented by this class and possible to print out a table header
in case the items are a list"""
return None
def get_dump_prefix(self):
"""Override in subclasses to print out a string before each item in
this class"""
return None
def get_dump_flat(self):
return False
def get_offset(self):
return self.__offset
def extract_items(self, items, data):
for item in items:
offset_pushed = False
if "attr_offset" in item:
offset = getattr(self, item["attr_offset"])
if "attr_offset_whence" in item:
offset_base = item["attr_offset_whence"]
if offset_base == "item":
# Offset from the start of this item
data.push_offset_and_seek(offset + self.get_offset())
offset_pushed = True
elif offset_base == "file":
# Offset from the start of the file
data.push_offset_and_seek(offset, SEEK_SET)
offset_pushed = True
elif offset_base == "eof":
# Offset from the end of the file
data.push_offset_and_seek(offset, SEEK_END)
offset_pushed = True
elif offset_base == "curr":
# Offset from the current file position
data.push_offset_and_seek(offset, SEEK_CUR)
offset_pushed = True
else:
raise ValueError(
'"attr_offset_whence" can be one of "item", '
'"file", "eof", "curr" (defaults to "file")'
)
else:
# Default to offset from the start of the file
data.push_offset_and_seek(offset, SEEK_SET)
offset_pushed = True
if "debug" in item:
print("%#8.8x: %s" % (self.__offset, item["debug"]))
continue
if "switch" in item:
if "cases" not in item:
raise ValueError(
'items with a "switch" key/value pair, '
'must have a "cases" key/value pair'
)
cases = item["cases"]
switch_value = getattr(self, item["switch"])
if switch_value in cases:
case_items = cases[switch_value]
elif "default" in cases:
case_items = cases["default"]
else:
raise ValueError("unhandled switch value %s" % (str(switch_value)))
self.extract_items(case_items, data)
continue
# Check if this item is just an alignment directive?
condition_passed = True
if "condition" in item:
condition_passed = item["condition"](self, data)
if "align" in item:
if condition_passed:
data.align_to(item["align"])
count = self.read_count_from_item(item)
value_fixup = None
# If there is a value fixup key, then call the function with the
# data and the value. The return value will be a fixed up value
# and the function also has the ability to modify the data stream
# (set the byte order, address byte size, etc).
if "value_fixup" in item:
value_fixup = item["value_fixup"]
if "attr_offset_size" in item:
# the number of items is inferred by parsing up until
# attr_offset + attr_offset_size, so we create a new
# FileExtract object that only contains the data we need and
# extract using that data.
attr_offset_size = getattr(self, item["attr_offset_size"])
item_data = data.read_data(attr_offset_size)
if item_data is None:
raise ValueError("failed to get item data")
value = self.decode_value(
item_data, item, condition_passed, value_fixup
)
else:
if count is None:
value = self.decode_value(data, item, condition_passed, value_fixup)
else:
value = []
for _ in range(count):
value.append(
self.decode_value(data, item, condition_passed, value_fixup)
)
if "validate" in item:
error = item["validate"](value)
if error is not None:
raise ValueError("error: %s" % (error))
if "name" in item and value is not None:
name = item["name"]
setattr(self, name, value)
name_len = len(name)
if self.max_name_len < name_len:
self.max_name_len = name_len
if offset_pushed:
data.pop_offset_and_seek()
def decode_value(self, data, item, condition_passed, value_fixup):
# If the item has a 'condition' key, then this is a function
# that we pass "self" to in order to determine if this value
# is available. If the callback returns False, then we set the
# value to the default value
read_value = True
if not condition_passed:
if "default" in item:
v = item["default"]
else:
v = None
read_value = False
if read_value:
if "type" in item:
v = self.read_type(data, item)
elif "class" in item:
v = item["class"](data)
elif "decode" in item:
v = item["decode"](data)
else:
raise ValueError(
'item definitions must have a "type" or '
'"class" or "decode" field'
)
# Let the item fixup each value if needed and possibly
# adjust the byte size or byte order.
if value_fixup is not None:
v = value_fixup(data, v)
return v
def dump_item(self, prefix, f, item, print_name, parent_path, flat):
if "switch" in item:
cases = item["cases"]
switch_value = getattr(self, item["switch"])
if switch_value in cases:
case_items = cases[switch_value]
elif "default" in cases:
case_items = cases["default"]
for case_item in case_items:
self.dump_item(prefix, f, case_item, print_name, parent_path, flat)
return
# We skip printing an item if any of the following are true:
# - If there is no name (padding)
# - If there is a 'dump' value key/value pair with False as the value
if "name" not in item or "dump" in item and item["dump"] is False:
return
name = item["name"]
if not hasattr(self, name):
return
value = getattr(self, name)
value_is_list = type(value) is list
# If flat is None set its value automatically
if flat is None:
flat = self.get_dump_flat()
if value_is_list:
if "table_header" in item:
table_header = item["table_header"]
f.write(table_header)
if not last_char_is_newline(table_header):
f.write("\n")
print_name = False
flat = True
if prefix is None:
prefix = self.get_dump_prefix()
flat_list = value_is_list and "flat" in item and item["flat"]
if prefix and flat_list is False:
f.write(prefix)
if print_name:
if not flat_list:
if flat:
f.write(name)
f.write("=")
else:
f.write("%-*s" % (self.max_name_len, name))
f.write(" = ")
if "dump" in item:
item["dump"](value, f)
return
elif "dump_list" in item:
item["dump_list"](value, prefix, flat, f)
return
else:
if value_is_list:
if parent_path is None:
item_path = name
else:
item_path = parent_path + "." + name
self.dump_values(f, item, value, print_name, item_path, prefix)
else:
if "dump_width" in item:
dump_width = item["dump_width"]
strm = StringIO()
self.dump_value(strm, item, value, print_name, parent_path)
s = strm.getvalue()
f.write(s)
s_len = len(s)
if s_len < dump_width:
f.write(" " * (dump_width - s_len))
else:
self.dump_value(f, item, value, print_name, parent_path)
if not flat_list:
if flat:
f.write(" ")
else:
f.write("\n")
def dump_value(self, f, item, value, print_name, parent_path):
if value is None:
f.write("<NULL>")
return
if "stringify" in item:
f.write("%s" % item["stringify"](value))
return
if "type" in item:
itemtype = item["type"]
if "format" in item:
format = item["format"]
elif itemtype in self.default_formats:
format = self.default_formats[itemtype]
else:
format = None
if format:
f.write(format % (value))
else:
if itemtype.startswith("cstr"):
f.write('"')
f.write(hex_escape(value))
f.write('"')
else:
f.write(str(value))
elif "class" in item:
value.dump(prefix=None, print_name=print_name, f=f, parent_path=parent_path)
else:
raise ValueError(
"item's with names must have a 'type' or " "'class' key/value pair"
)
def dump_values(self, f, item, values, print_name, parent_path, prefix):
if len(values) == 0:
if "flat" in item and item["flat"]:
if prefix:
f.write(prefix)
if parent_path:
f.write(parent_path)
f.write("[]\n")
return
flat = self.get_dump_flat()
if flat is False and "flat" in item:
flat = item["flat"]
count = len(values)
if count > 0:
index_width = 1
w = count
while w > 10:
index_width += 1
w /= 10
if isinstance(values[0], AutoParser):
first = values[0]
table_header_lines = first.get_list_header_lines()
if table_header_lines:
f.write("\n")
print_name = False
flat = True
for line in table_header_lines:
f.write(" " * (index_width + 3))
f.write(line)
index_format = "[%%%uu]" % (index_width)
if prefix is None:
prefix = ""
for (i, value) in enumerate(values):
if flat:
if prefix:
f.write(prefix)
if parent_path:
f.write(parent_path)
f.write(index_format % (i))
f.write(" = ")
else:
format = "\n%s%s" + index_format + "\n"
f.write(format % (prefix, parent_path, i))
self.dump_value(f, item, value, print_name, parent_path)
f.write("\n")
def dump(
self, prefix=None, f=sys.stdout, print_name=True, parent_path=None, flat=None
):
header = self.get_dump_header()
if header:
f.write(header)
if not last_char_is_newline(header):
f.write("\n")
for item in self.items:
self.dump_item(prefix, f, item, print_name, parent_path, flat)
def read_count_from_item(self, item):
if "attr_count" in item:
# If 'attr_count' is in the dictionary. If so, it means that
# there is already an attribute in this object that has the
# count in it and we should ready that many of the type
count = getattr(self, item["attr_count"])
# If there is an 'attr_count_fixup' key, it is a function that
# will fixup the count value
if "attr_count_fixup" in item:
count = item["attr_count_fixup"](count)
return count
elif "count" in item:
return item["count"]
return None
def read_builtin_type(self, data, typename, item):
if typename in self.read_value_callbacks:
return self.read_value_callbacks[typename](data)
if typename == "cstr":
count = self.read_count_from_item(item)
if count is None:
return data.get_c_string()
else:
return data.get_fixed_length_c_string(count)
if typename == "bytes":
if "attr_size" in item:
size = getattr(self, item["attr_size"])
return data.read_size(size)
else:
raise ValueError(
"'bytes' must have either a 'count' or a "
"'attr_count' key/value pair"
)
raise ValueError("invalid 'type' value %s" % (typename))
def read_type(self, data, item):
typename = item["type"]
if "[" in typename:
match = self.type_regex.match(typename)
if not match:
raise ValueError(
"item type array must be a valid type "
"followed by [] with a decimal number "
"as the size"
)
basetype = match.group(1)
count = int(match.group(2))
if basetype == "cstr":
return data.get_fixed_length_c_string(count)
result = []
for _ in range(count):
result.append(self.read_builtin_type(data, basetype, item))
return result
else:
return self.read_builtin_type(data, typename, item)