recipes/conv_glu/librispeech/prepare.py [25:57]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Librispeech Dataset creation.")
    parser.add_argument(
        "--data_dst", help="data destination directory", default="./librispeech"
    )
    parser.add_argument(
        "--model_dst",
        help="model auxilary files destination directory",
        default="./conv_glu_librispeech_char",
    )
    parser.add_argument("--kenlm", help="location to installed kenlm directory")
    parser.add_argument(
        "-p", "--process", help="# of process for Multiprocessing", default=8, type=int
    )

    args = parser.parse_args()
    os.system(
        "python3 {}/../../../data/librispeech/prepare.py --dst {} -p {}".format(
            os.path.dirname(os.path.abspath(__file__)), args.data_dst, args.process
        )
    )

    subpaths = {
        "train": ["train-clean-100", "train-clean-360", "train-other-500"],
        "dev": ["dev-clean", "dev-other"],
        "test": ["test-clean", "test-other"],
    }

    lists_path = os.path.join(args.data_dst, "lists")
    am_path = os.path.join(args.model_dst, "am")
    decoder_path = os.path.join(args.model_dst, "decoder")
    os.makedirs(am_path, exist_ok=True)
    os.makedirs(decoder_path, exist_ok=True)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



recipes/lexicon_free/librispeech/prepare.py [29:61]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Librispeech Dataset creation.")
    parser.add_argument(
        "--data_dst", help="data destination directory", default="./librispeech"
    )
    parser.add_argument(
        "--model_dst",
        help="model auxilary files destination directory",
        default="./conv_glu_librispeech_char",
    )
    parser.add_argument("--kenlm", help="location to installed kenlm directory")
    parser.add_argument(
        "-p", "--process", help="# of process for Multiprocessing", default=8, type=int
    )

    args = parser.parse_args()
    os.system(
        "python3 {}/../../../data/librispeech/prepare.py --dst {} -p {}".format(
            os.path.dirname(os.path.abspath(__file__)), args.data_dst, args.process
        )
    )

    subpaths = {
        "train": ["train-clean-100", "train-clean-360", "train-other-500"],
        "dev": ["dev-clean", "dev-other"],
        "test": ["test-clean", "test-other"],
    }

    lists_path = os.path.join(args.data_dst, "lists")
    am_path = os.path.join(args.model_dst, "am")
    decoder_path = os.path.join(args.model_dst, "decoder")
    os.makedirs(am_path, exist_ok=True)
    os.makedirs(decoder_path, exist_ok=True)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



