recipes/local_prior_match/librispeech/prepare.py (101 lines of code) (raw):

""" Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the MIT-style license found in the LICENSE file in the root directory of this source tree. ---------- Script to prepare token set and lexicon to train/eval model on Librispeech in wav2letter++ pipelines Command : python3 prepare.py --data_dst [...] --model_dst [...] Replace [...] with appropriate paths """ from __future__ import absolute_import, division, print_function, unicode_literals import argparse import os import sentencepiece as spm if __name__ == "__main__": parser = argparse.ArgumentParser(description="Librispeech Dataset creation.") parser.add_argument( "--data_dst", help="data destination directory", default="./librispeech" ) parser.add_argument( "--model_dst", help="model auxilary files destination directory", default="./lpm_librispeech", ) parser.add_argument( "-p", "--process", help="# of process for Multiprocessing", default=8, type=int ) args = parser.parse_args() os.system( "python3 {}/../../../data/librispeech/prepare.py --dst {} -p {}".format( os.path.dirname(os.path.abspath(__file__)), args.data_dst, args.process ) ) subpaths = { "paired": ["train-clean-100"], "unpaired": ["train-clean-360", "train-other-500"], "dev": ["dev-clean", "dev-other"], } lists_path = os.path.join(args.data_dst, "lists") am_path = os.path.join(args.model_dst, "am") lm_path = os.path.join(args.model_dst, "lm") unpaired_lists_path = os.path.join(args.model_dst, "lpm_data") os.makedirs(am_path, exist_ok=True) os.makedirs(lm_path, exist_ok=True) os.makedirs(unpaired_lists_path, exist_ok=True) # Generating am/* num_wordpieces = 5000 nbest = 10 train_all_text = os.path.join(am_path, "train.txt") prefix = "librispeech-paired-train-unigram-{}".format(num_wordpieces) prefix = os.path.join(am_path, prefix) vocab_name = prefix + ".vocab" model_name = prefix + ".model" # prepare paired data from train-clean-100 print("Preparing tokens and lexicon from paired data...\n", flush=True) word_dict = set() with open(train_all_text, "w") as ftext: for name in subpaths["paired"]: with open(os.path.join(lists_path, name + ".lst"), "r") as flist: for line in flist: transcription = line.strip().split(" ")[3:] ftext.write(" ".join(transcription) + "\n") word_dict.update(transcription) for name in subpaths["dev"]: with open(os.path.join(lists_path, name + ".lst"), "r") as flist: for line in flist: transcription = line.strip().split(" ")[3:] word_dict.update(transcription) lexicon_words = sorted(word_dict) # prepare dummy file lists and lexicon for unpaired data for name in subpaths["unpaired"]: with open(os.path.join(lists_path, name + ".lst"), "r") as flist: with open( os.path.join(unpaired_lists_path, name + "-dummy.lst"), "w" ) as fout: for line in flist: file_tag, audio_path, audio_length, _ = \ line.strip().split(" ", 3) # use a random word from the lexicon as the transcription fout.write("%s %s %s %s\n" % (file_tag, audio_path, audio_length, lexicon_words[0])) # train print("Computing word pieces...\n", flush=True) train_cmd = ( "--input={input} --model_prefix={prefix} --vocab_size={sz}" " --character_coverage=1.0 --model_type=unigram" " --split_by_unicode_script=false".format( input=train_all_text, prefix=prefix, sz=num_wordpieces ) ) spm.SentencePieceTrainer.Train(train_cmd) # word piece dictionary print("Creating word piece list...\n", flush=True) exclude_list = {"<unk>", "<s>", "</s>"} with open(vocab_name.replace(".vocab", ".tokens"), "w") as fvocab_filt: with open(vocab_name, "r", encoding="utf-8") as fvocab: for line in fvocab: val, _ = line.strip().split("\t", 1) if val not in exclude_list: fvocab_filt.write(val.replace("\u2581", "_") + "\n") # word -> word piece lexicon for loading targets print("Creating word -> word pieces lexicon...\n", flush=True) sp = spm.SentencePieceProcessor() sp.Load(model_name) lexicon_name = "librispeech-paired-train+dev-unigram-{sz}-nbest{n}.lexicon".format( sz=num_wordpieces, n=nbest ) with open(os.path.join(am_path, lexicon_name), "w") as f_lexicon: for word in lexicon_words: wps = sp.NBestEncodeAsPieces(word, nbest) for wp in wps: # the order matters for our training f_lexicon.write( word + "\t" + " ".join([w.replace("\u2581", "_") for w in wp]) + "\n" ) print("Done!", flush=True)