scripts/models/resnext.py [101:113]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.bn_out = norm_act(in_channels)
        if classes != 0:
            self.classifier = nn.Sequential(
                OrderedDict(
                    [
                        ("avg_pool", GlobalAvgPool2d()),
                        ("fc", nn.Linear(in_channels, classes)),
                    ]
                )
            )

    def forward(self, img):
        out = self.mod1(img)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



scripts/models/wider_resnet.py [73:85]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.bn_out = norm_act(in_channels)
        if classes != 0:
            self.classifier = nn.Sequential(
                OrderedDict(
                    [
                        ("avg_pool", GlobalAvgPool2d()),
                        ("fc", nn.Linear(in_channels, classes)),
                    ]
                )
            )

    def forward(self, img):
        out = self.mod1(img)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



