def __call__()

in scripts/dataset/transform.py [0:0]


    def __call__(self, img):
        # Scaling
        scale = self.longest_max_size / float(max(img.size[0], img.size[1]))
        if scale != 1.0:
            out_size = tuple(int(dim * scale) for dim in img.size)
            img = img.resize(out_size, resample=Image.BILINEAR)

        # Convert to torch and normalize
        img = tfn.to_tensor(img)
        img.sub_(img.new(self.rgb_mean).view(-1, 1, 1))
        img.div_(img.new(self.rgb_std).view(-1, 1, 1))

        return img