in scripts/modules/deeplab.py [0:0]
def forward(self, x):
# Map convolutions
out = torch.cat([m(x) for m in self.map_convs], dim=1)
out = self.map_bn(out)
out = self.red_conv(out)
# Global pooling
pool = self._global_pooling(x)
pool = self.global_pooling_conv(pool)
pool = self.global_pooling_bn(pool)
pool = self.pool_red_conv(pool)
if self.training or self.pooling_size is None:
pool = pool.repeat(1, 1, x.size(2), x.size(3))
out += pool
out = self.red_bn(out)
return out