scripts/dataset/sampler.py (20 lines of code) (raw):

# Copyright (c) Facebook, Inc. and its affiliates. import torch import torch.distributed as dist class TestDistributedSampler(torch.utils.data.Sampler): """Sampler that restricts data loading to a subset of the dataset. It is especially useful in conjunction with :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each process can pass a DistributedSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it. .. note:: Dataset is assumed to be of constant size. Arguments: dataset: Dataset used for sampling. num_replicas (optional): Number of processes participating in distributed training. rank (optional): Rank of the current process within num_replicas. """ def __init__(self, dataset, num_replicas=None, rank=None): if num_replicas is None: num_replicas = dist.get_world_size() if dist.is_initialized() else 1 if rank is None: rank = dist.get_rank() if dist.is_initialized() else 0 self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.num_samples = (len(self.dataset) // self.num_replicas) + int( (len(self.dataset) % self.num_replicas) < self.rank ) def __iter__(self): # deterministically shuffle based on epoch indices = torch.arange(0, len(self.dataset)) # subsample indices = indices[self.rank :: self.num_replicas] return iter(indices) def __len__(self): return self.num_samples