scripts/train_instance_seg.py [350:367]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                img_list.append(idxs[i])

            del pred, batch

            # Log batch
            if varargs["summary"] is not None and (it + 1) % varargs["log_interval"] == 0:
                logging.iteration(
                    None, "val", varargs["global_step"],
                    varargs["epoch"] + 1, varargs["num_epochs"],
                    it + 1, len(dataloader),
                    OrderedDict([
                        ("loss", loss_meter),
                        ("data_time", data_time_meter),
                        ("batch_time", batch_time_meter)
                    ])
                )

            data_time = time.time()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



scripts/train_panoptic.py [433:450]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                        img_list.append(idxs[i])

            del pred, batch

            # Log batch
            if varargs["summary"] is not None and (it + 1) % varargs["log_interval"] == 0:
                logging.iteration(
                    None, "val", varargs["global_step"],
                    varargs["epoch"] + 1, varargs["num_epochs"],
                    it + 1, len(dataloader),
                    OrderedDict([
                        ("loss", loss_meter),
                        ("data_time", data_time_meter),
                        ("batch_time", batch_time_meter)
                    ])
                )

            data_time = time.time()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



