scripts/train_detection.py (374 lines of code) (raw):

# Copyright (c) Facebook, Inc. and its affiliates. import argparse import shutil import time from collections import OrderedDict from os import path import tensorboardX as tensorboard import torch import torch.optim as optim import torch.utils.data as data from torch import distributed import seamseg.models as models import seamseg.utils.coco_ap as coco_ap from seamseg.algos.detection import PredictionGenerator, ProposalMatcher, DetectionLoss from seamseg.algos.fpn import DetectionAlgoFPN, RPNAlgoFPN from seamseg.algos.rpn import AnchorMatcher, ProposalGenerator, RPNLoss from seamseg.config import load_config, DEFAULTS as DEFAULT_CONFIGS from seamseg.data import ISSTransform, ISSDataset, iss_collate_fn from seamseg.data.sampler import DistributedARBatchSampler from seamseg.models.detection import DetectionNet, NETWORK_INPUTS from seamseg.modules.fpn import FPN, FPNBody from seamseg.modules.heads import RPNHead, FPNROIHead from seamseg.utils import logging from seamseg.utils.meters import AverageMeter from seamseg.utils.misc import config_to_string, scheduler_from_config, norm_act_from_config, freeze_params, \ all_reduce_losses, NORM_LAYERS, OTHER_LAYERS from seamseg.utils.parallel import DistributedDataParallel from seamseg.utils.snapshot import save_snapshot, resume_from_snapshot, pre_train_from_snapshots parser = argparse.ArgumentParser(description="Detection training script") parser.add_argument("--local_rank", type=int) parser.add_argument("--log_dir", type=str, default=".", help="Write logs to the given directory") parser.add_argument("--resume", metavar="FILE", type=str, help="Resume training from given file") parser.add_argument("--eval", action="store_true", help="Do a single validation run") parser.add_argument("--pre_train", metavar="FILE", type=str, nargs="*", help="Start from the given pre-trained snapshots, overwriting each with the next one in the list. " "Snapshots can be given in the format '{module_name}:{path}', where '{module_name} is one of " "'body', 'rpn_head' or 'roi_head'. In that case only that part of the network " "will be loaded from the snapshot") parser.add_argument("config", metavar="FILE", type=str, help="Path to configuration file") parser.add_argument("data", metavar="DIR", type=str, help="Path to dataset") def log_debug(msg, *args, **kwargs): if distributed.get_rank() == 0: logging.get_logger().debug(msg, *args, **kwargs) def log_info(msg, *args, **kwargs): if distributed.get_rank() == 0: logging.get_logger().info(msg, *args, **kwargs) def make_config(args): log_debug("Loading configuration from %s", args.config) conf = load_config(args.config, DEFAULT_CONFIGS["detection"]) log_debug("\n%s", config_to_string(conf)) return conf def make_dataloader(args, config, rank, world_size): config = config["dataloader"] log_debug("Creating dataloaders for dataset in %s", args.data) # Training dataloader train_tf = ISSTransform(config.getint("shortest_size"), config.getint("longest_max_size"), config.getstruct("rgb_mean"), config.getstruct("rgb_std"), config.getboolean("random_flip"), config.getstruct("random_scale")) train_db = ISSDataset(args.data, config["train_set"], train_tf) train_sampler = DistributedARBatchSampler( train_db, config.getint("train_batch_size"), world_size, rank, True) train_dl = data.DataLoader(train_db, batch_sampler=train_sampler, collate_fn=iss_collate_fn, pin_memory=True, num_workers=config.getint("num_workers")) # Validation dataloader val_tf = ISSTransform(config.getint("shortest_size"), config.getint("longest_max_size"), config.getstruct("rgb_mean"), config.getstruct("rgb_std")) val_db = ISSDataset(args.data, config["val_set"], val_tf) val_sampler = DistributedARBatchSampler( val_db, config.getint("val_batch_size"), world_size, rank, False) val_dl = data.DataLoader(val_db, batch_sampler=val_sampler, collate_fn=iss_collate_fn, pin_memory=True, num_workers=config.getint("num_workers")) return train_dl, val_dl def make_model(config, num_thing, num_stuff): body_config = config["body"] fpn_config = config["fpn"] rpn_config = config["rpn"] roi_config = config["roi"] classes = {"total": num_thing + num_stuff, "stuff": num_stuff, "thing": num_thing} # BN + activation norm_act_static, norm_act_dynamic = norm_act_from_config(body_config) # Create backbone log_debug("Creating backbone model %s", body_config["body"]) body_fn = models.__dict__["net_" + body_config["body"]] body_params = body_config.getstruct("body_params") if body_config.get("body_params") else {} body = body_fn(norm_act=norm_act_static, **body_params) if body_config.get("weights"): body.load_state_dict(torch.load(body_config["weights"], map_location="cpu")) # Freeze parameters for n, m in body.named_modules(): for mod_id in range(1, body_config.getint("num_frozen") + 1): if ("mod%d" % mod_id) in n: freeze_params(m) body_channels = body_config.getstruct("out_channels") # Create FPN fpn_inputs = fpn_config.getstruct("inputs") fpn = FPN([body_channels[inp] for inp in fpn_inputs], fpn_config.getint("out_channels"), fpn_config.getint("extra_scales"), norm_act_static, fpn_config["interpolation"]) body = FPNBody(body, fpn, fpn_inputs) # Create RPN proposal_generator = ProposalGenerator(rpn_config.getfloat("nms_threshold"), rpn_config.getint("num_pre_nms_train"), rpn_config.getint("num_post_nms_train"), rpn_config.getint("num_pre_nms_val"), rpn_config.getint("num_post_nms_val"), rpn_config.getint("min_size")) anchor_matcher = AnchorMatcher(rpn_config.getint("num_samples"), rpn_config.getfloat("pos_ratio"), rpn_config.getfloat("pos_threshold"), rpn_config.getfloat("neg_threshold"), rpn_config.getfloat("void_threshold")) rpn_loss = RPNLoss(rpn_config.getfloat("sigma")) rpn_algo = RPNAlgoFPN( proposal_generator, anchor_matcher, rpn_loss, rpn_config.getint("anchor_scale"), rpn_config.getstruct("anchor_ratios"), fpn_config.getstruct("out_strides"), rpn_config.getint("fpn_min_level"), rpn_config.getint("fpn_levels")) rpn_head = RPNHead( fpn_config.getint("out_channels"), len(rpn_config.getstruct("anchor_ratios")), 1, rpn_config.getint("hidden_channels"), norm_act_dynamic) # Create detection network prediction_generator = PredictionGenerator(roi_config.getfloat("nms_threshold"), roi_config.getfloat("score_threshold"), roi_config.getint("max_predictions")) proposal_matcher = ProposalMatcher(classes, roi_config.getint("num_samples"), roi_config.getfloat("pos_ratio"), roi_config.getfloat("pos_threshold"), roi_config.getfloat("neg_threshold_hi"), roi_config.getfloat("neg_threshold_lo"), roi_config.getfloat("void_threshold")) roi_loss = DetectionLoss(roi_config.getfloat("sigma")) roi_size = roi_config.getstruct("roi_size") roi_algo = DetectionAlgoFPN( prediction_generator, proposal_matcher, roi_loss, classes, roi_config.getstruct("bbx_reg_weights"), roi_config.getint("fpn_canonical_scale"), roi_config.getint("fpn_canonical_level"), roi_size, roi_config.getint("fpn_min_level"), roi_config.getint("fpn_levels")) roi_head = FPNROIHead(fpn_config.getint("out_channels"), classes, roi_size, norm_act=norm_act_dynamic) # Create final network return DetectionNet(body, rpn_head, roi_head, rpn_algo, roi_algo, classes) def make_optimizer(config, model, epoch_length): body_config = config["body"] opt_config = config["optimizer"] sch_config = config["scheduler"] # Gather parameters from the network norm_parameters = [] other_parameters = [] for m in model.modules(): if any(isinstance(m, layer) for layer in NORM_LAYERS): norm_parameters += [p for p in m.parameters() if p.requires_grad] elif any(isinstance(m, layer) for layer in OTHER_LAYERS): other_parameters += [p for p in m.parameters() if p.requires_grad] assert len(norm_parameters) + len(other_parameters) == len([p for p in model.parameters() if p.requires_grad]), \ "Not all parameters that require grad are accounted for in the optimizer" # Set-up optimizer hyper-parameters parameters = [ { "params": norm_parameters, "lr": opt_config.getfloat("lr") if not body_config.getboolean("bn_frozen") else 0., "weight_decay": opt_config.getfloat("weight_decay") if opt_config.getboolean("weight_decay_norm") else 0. }, { "params": other_parameters, "lr": opt_config.getfloat("lr"), "weight_decay": opt_config.getfloat("weight_decay") } ] optimizer = optim.SGD( parameters, momentum=opt_config.getfloat("momentum"), nesterov=opt_config.getboolean("nesterov")) scheduler = scheduler_from_config(sch_config, optimizer, epoch_length) assert sch_config["update_mode"] in ("batch", "epoch") batch_update = sch_config["update_mode"] == "batch" total_epochs = sch_config.getint("epochs") return optimizer, scheduler, batch_update, total_epochs def train(model, optimizer, scheduler, dataloader, meters, **varargs): model.train() dataloader.batch_sampler.set_epoch(varargs["epoch"]) optimizer.zero_grad() global_step = varargs["global_step"] loss_weights = varargs["loss_weights"] data_time_meter = AverageMeter((), meters["loss"].momentum) batch_time_meter = AverageMeter((), meters["loss"].momentum) data_time = time.time() for it, batch in enumerate(dataloader): # Upload batch batch = {k: batch[k].cuda(device=varargs["device"], non_blocking=True) for k in NETWORK_INPUTS} data_time_meter.update(torch.tensor(time.time() - data_time)) # Update scheduler global_step += 1 if varargs["batch_update"]: scheduler.step(global_step) batch_time = time.time() # Run network losses, _ = model(**batch, do_loss=True, do_prediction=False) distributed.barrier() losses = OrderedDict((k, v.mean()) for k, v in losses.items()) losses["loss"] = sum(w * l for w, l in zip(loss_weights, losses.values())) optimizer.zero_grad() losses["loss"].backward() optimizer.step() # Gather stats from all workers losses = all_reduce_losses(losses) # Update meters with torch.no_grad(): for loss_name, loss_value in losses.items(): meters[loss_name].update(loss_value.cpu()) batch_time_meter.update(torch.tensor(time.time() - batch_time)) # Clean-up del batch, losses # Log if varargs["summary"] is not None and (it + 1) % varargs["log_interval"] == 0: logging.iteration( varargs["summary"], "train", global_step, varargs["epoch"] + 1, varargs["num_epochs"], it + 1, len(dataloader), OrderedDict([ ("lr", scheduler.get_lr()[0]), ("loss", meters["loss"]), ("obj_loss", meters["obj_loss"]), ("bbx_loss", meters["bbx_loss"]), ("roi_cls_loss", meters["roi_cls_loss"]), ("roi_bbx_loss", meters["roi_bbx_loss"]), ("data_time", data_time_meter), ("batch_time", batch_time_meter) ]) ) data_time = time.time() return global_step def validate(model, dataloader, loss_weights, **varargs): model.eval() dataloader.batch_sampler.set_epoch(varargs["epoch"]) num_stuff = dataloader.dataset.num_stuff loss_meter = AverageMeter(()) data_time_meter = AverageMeter(()) batch_time_meter = AverageMeter(()) # Accumulators for ap and panoptic computation coco_struct = [] img_list = [] data_time = time.time() for it, batch in enumerate(dataloader): with torch.no_grad(): idxs = batch["idx"] batch_sizes = [img.shape[-2:] for img in batch["img"]] original_sizes = batch["size"] # Upload batch batch = {k: batch[k].cuda(device=varargs["device"], non_blocking=True) for k in NETWORK_INPUTS} data_time_meter.update(torch.tensor(time.time() - data_time)) batch_time = time.time() # Run network losses, pred = model(**batch, do_loss=True, do_prediction=True) losses = OrderedDict((k, v.mean()) for k, v in losses.items()) losses = all_reduce_losses(losses) loss = sum(w * l for w, l in zip(loss_weights, losses.values())) # Update meters loss_meter.update(loss.cpu()) batch_time_meter.update(torch.tensor(time.time() - batch_time)) del loss, losses # Accumulate COCO AP and panoptic predictions for i, (bbx_pred, cls_pred, obj_pred) in enumerate( zip(pred["bbx_pred"], pred["cls_pred"], pred["obj_pred"])): # If there are no detections skip this image if bbx_pred is None: continue # COCO AP coco_struct += coco_ap.process_prediction( bbx_pred, cls_pred + num_stuff, obj_pred, None, batch_sizes[i], idxs[i], original_sizes[i]) img_list.append(idxs[i]) del pred, batch # Log batch if varargs["summary"] is not None and (it + 1) % varargs["log_interval"] == 0: logging.iteration( None, "val", varargs["global_step"], varargs["epoch"] + 1, varargs["num_epochs"], it + 1, len(dataloader), OrderedDict([ ("loss", loss_meter), ("data_time", data_time_meter), ("batch_time", batch_time_meter) ]) ) data_time = time.time() # Finalize AP computation det_map, _ = coco_ap.summarize_mp(coco_struct, varargs["coco_gt"], img_list, varargs["log_dir"], False) # Log results log_info("Validation done") if varargs["summary"] is not None: logging.iteration( varargs["summary"], "val", varargs["global_step"], varargs["epoch"] + 1, varargs["num_epochs"], len(dataloader), len(dataloader), OrderedDict([ ("loss", loss_meter.mean.item()), ("det_map", det_map), ("data_time", data_time_meter.mean.item()), ("batch_time", batch_time_meter.mean.item()) ]) ) return det_map def main(args): # Initialize multi-processing distributed.init_process_group(backend='nccl', init_method='env://') device_id, device = args.local_rank, torch.device(args.local_rank) rank, world_size = distributed.get_rank(), distributed.get_world_size() torch.cuda.set_device(device_id) # Initialize logging if rank == 0: logging.init(args.log_dir, "training" if not args.eval else "eval") summary = tensorboard.SummaryWriter(args.log_dir) else: summary = None # Load configuration config = make_config(args) # Create dataloaders train_dataloader, val_dataloader = make_dataloader(args, config, rank, world_size) # Create model model = make_model(config, train_dataloader.dataset.num_thing, train_dataloader.dataset.num_stuff) if args.resume: assert not args.pre_train, "resume and pre_train are mutually exclusive" log_debug("Loading snapshot from %s", args.resume) snapshot = resume_from_snapshot(model, args.resume, ["body", "rpn_head", "roi_head"]) elif args.pre_train: assert not args.resume, "resume and pre_train are mutually exclusive" log_debug("Loading pre-trained model from %s", args.pre_train) pre_train_from_snapshots(model, args.pre_train, ["body", "rpn_head", "roi_head"]) else: assert not args.eval, "--resume is needed in eval mode" snapshot = None # Init GPU stuff torch.backends.cudnn.benchmark = config["general"].getboolean("cudnn_benchmark") model = DistributedDataParallel(model.cuda(device), device_ids=[device_id], output_device=device_id, find_unused_parameters=True) # Create optimizer optimizer, scheduler, batch_update, total_epochs = make_optimizer(config, model, len(train_dataloader)) if args.resume: optimizer.load_state_dict(snapshot["state_dict"]["optimizer"]) # Training loop momentum = 1. - 1. / len(train_dataloader) meters = { "loss": AverageMeter((), momentum), "obj_loss": AverageMeter((), momentum), "bbx_loss": AverageMeter((), momentum), "roi_cls_loss": AverageMeter((), momentum), "roi_bbx_loss": AverageMeter((), momentum) } if args.resume: starting_epoch = snapshot["training_meta"]["epoch"] + 1 best_score = snapshot["training_meta"]["best_score"] global_step = snapshot["training_meta"]["global_step"] for name, meter in meters.items(): meter.load_state_dict(snapshot["state_dict"][name + "_meter"]) del snapshot else: starting_epoch = 0 best_score = 0 global_step = 0 # Optional: evaluation only: if args.eval: log_info("Validating epoch %d", starting_epoch - 1) validate(model, val_dataloader, config["optimizer"].getstruct("loss_weights"), device=device, summary=summary, global_step=global_step, epoch=starting_epoch - 1, num_epochs=total_epochs, log_interval=config["general"].getint("log_interval"), coco_gt=config["dataloader"]["coco_gt"], log_dir=args.log_dir) exit(0) for epoch in range(starting_epoch, total_epochs): log_info("Starting epoch %d", epoch + 1) if not batch_update: scheduler.step(epoch) # Run training epoch global_step = train(model, optimizer, scheduler, train_dataloader, meters, batch_update=batch_update, epoch=epoch, summary=summary, device=device, log_interval=config["general"].getint("log_interval"), num_epochs=total_epochs, global_step=global_step, loss_weights=config["optimizer"].getstruct("loss_weights")) # Save snapshot (only on rank 0) if rank == 0: snapshot_file = path.join(args.log_dir, "model_last.pth.tar") log_debug("Saving snapshot to %s", snapshot_file) meters_out_dict = {k + "_meter": v.state_dict() for k, v in meters.items()} save_snapshot(snapshot_file, config, epoch, 0, best_score, global_step, body=model.module.body.state_dict(), rpn_head=model.module.rpn_head.state_dict(), roi_head=model.module.roi_head.state_dict(), optimizer=optimizer.state_dict(), **meters_out_dict) if (epoch + 1) % config["general"].getint("val_interval") == 0: log_info("Validating epoch %d", epoch + 1) score = validate(model, val_dataloader, config["optimizer"].getstruct("loss_weights"), device=device, summary=summary, global_step=global_step, epoch=epoch, num_epochs=total_epochs, log_interval=config["general"].getint("log_interval"), coco_gt=config["dataloader"]["coco_gt"], log_dir=args.log_dir) # Update the score on the last saved snapshot if rank == 0: snapshot = torch.load(snapshot_file, map_location="cpu") snapshot["training_meta"]["last_score"] = score torch.save(snapshot, snapshot_file) del snapshot if score > best_score: best_score = score if rank == 0: shutil.copy(snapshot_file, path.join(args.log_dir, "model_best.pth.tar")) if __name__ == "__main__": main(parser.parse_args())