src/backend/vector/avx2/field.rs (444 lines of code) (raw):

// -*- mode: rust; coding: utf-8; -*- // // This file is part of curve25519-dalek. // Copyright (c) 2016-2019 Isis Lovecruft, Henry de Valence // See LICENSE for licensing information. // // Authors: // - Isis Agora Lovecruft <isis@patternsinthevoid.net> // - Henry de Valence <hdevalence@hdevalence.ca> //! An implementation of 4-way vectorized 32bit field arithmetic using //! AVX2. //! //! The `FieldElement2625x4` struct provides a vector of four field //! elements, implemented using AVX2 operations. Its API is designed //! to abstract away the platform-dependent details, so that point //! arithmetic can be implemented only in terms of a vector of field //! elements. //! //! At this level, the API is optimized for speed and not safety. The //! `FieldElement2625x4` does not always perform reductions. The pre- //! and post-conditions on the bounds of the coefficients are //! documented for each method, but it is the caller's responsibility //! to ensure that there are no overflows. #![allow(non_snake_case)] const A_LANES: u8 = 0b0000_0101; const B_LANES: u8 = 0b0000_1010; const C_LANES: u8 = 0b0101_0000; const D_LANES: u8 = 0b1010_0000; #[allow(unused)] const A_LANES64: u8 = 0b00_00_00_11; #[allow(unused)] const B_LANES64: u8 = 0b00_00_11_00; #[allow(unused)] const C_LANES64: u8 = 0b00_11_00_00; #[allow(unused)] const D_LANES64: u8 = 0b11_00_00_00; use core::ops::{Add, Mul, Neg}; use packed_simd::{i32x8, u32x8, u64x4, IntoBits}; use backend::vector::avx2::constants::{P_TIMES_16_HI, P_TIMES_16_LO, P_TIMES_2_HI, P_TIMES_2_LO}; use backend::serial::u64::field::FieldElement51; /// Unpack 32-bit lanes into 64-bit lanes: /// ```ascii,no_run /// (a0, b0, a1, b1, c0, d0, c1, d1) /// ``` /// into /// ```ascii,no_run /// (a0, 0, b0, 0, c0, 0, d0, 0) /// (a1, 0, b1, 0, c1, 0, d1, 0) /// ``` #[inline(always)] fn unpack_pair(src: u32x8) -> (u32x8, u32x8) { let a: u32x8; let b: u32x8; let zero = i32x8::new(0, 0, 0, 0, 0, 0, 0, 0); unsafe { use core::arch::x86_64::_mm256_unpackhi_epi32; use core::arch::x86_64::_mm256_unpacklo_epi32; a = _mm256_unpacklo_epi32(src.into_bits(), zero.into_bits()).into_bits(); b = _mm256_unpackhi_epi32(src.into_bits(), zero.into_bits()).into_bits(); } (a, b) } /// Repack 64-bit lanes into 32-bit lanes: /// ```ascii,no_run /// (a0, 0, b0, 0, c0, 0, d0, 0) /// (a1, 0, b1, 0, c1, 0, d1, 0) /// ``` /// into /// ```ascii,no_run /// (a0, b0, a1, b1, c0, d0, c1, d1) /// ``` #[inline(always)] fn repack_pair(x: u32x8, y: u32x8) -> u32x8 { unsafe { use core::arch::x86_64::_mm256_blend_epi32; use core::arch::x86_64::_mm256_shuffle_epi32; // Input: x = (a0, 0, b0, 0, c0, 0, d0, 0) // Input: y = (a1, 0, b1, 0, c1, 0, d1, 0) let x_shuffled = _mm256_shuffle_epi32(x.into_bits(), 0b11_01_10_00); let y_shuffled = _mm256_shuffle_epi32(y.into_bits(), 0b10_00_11_01); // x' = (a0, b0, 0, 0, c0, d0, 0, 0) // y' = ( 0, 0, a1, b1, 0, 0, c1, d1) return _mm256_blend_epi32(x_shuffled, y_shuffled, 0b11001100).into_bits(); } } /// The `Lanes` enum represents a subset of the lanes `A,B,C,D` of a /// `FieldElement2625x4`. /// /// It's used to specify blend operations without /// having to know details about the data layout of the /// `FieldElement2625x4`. #[derive(Copy, Clone, Debug)] pub enum Lanes { C, D, AB, AC, CD, AD, BC, ABCD, } /// The `Shuffle` enum represents a shuffle of a `FieldElement2625x4`. /// /// The enum variants are named by what they do to a vector \\( /// (A,B,C,D) \\); for instance, `Shuffle::BADC` turns \\( (A, B, C, /// D) \\) into \\( (B, A, D, C) \\). #[derive(Copy, Clone, Debug)] pub enum Shuffle { AAAA, BBBB, CACA, DBBD, ADDA, CBCB, ABAB, BADC, BACD, ABDC, } /// A vector of four field elements. /// /// Each operation on a `FieldElement2625x4` has documented effects on /// the bounds of the coefficients. This API is designed for speed /// and not safety; it is the caller's responsibility to ensure that /// the post-conditions of one operation are compatible with the /// pre-conditions of the next. #[derive(Clone, Copy, Debug)] pub struct FieldElement2625x4(pub(crate) [u32x8; 5]); use subtle::Choice; use subtle::ConditionallySelectable; impl ConditionallySelectable for FieldElement2625x4 { fn conditional_select( a: &FieldElement2625x4, b: &FieldElement2625x4, choice: Choice, ) -> FieldElement2625x4 { let mask = (-(choice.unwrap_u8() as i32)) as u32; let mask_vec = u32x8::splat(mask); FieldElement2625x4([ a.0[0] ^ (mask_vec & (a.0[0] ^ b.0[0])), a.0[1] ^ (mask_vec & (a.0[1] ^ b.0[1])), a.0[2] ^ (mask_vec & (a.0[2] ^ b.0[2])), a.0[3] ^ (mask_vec & (a.0[3] ^ b.0[3])), a.0[4] ^ (mask_vec & (a.0[4] ^ b.0[4])), ]) } fn conditional_assign( &mut self, other: &FieldElement2625x4, choice: Choice, ) { let mask = (-(choice.unwrap_u8() as i32)) as u32; let mask_vec = u32x8::splat(mask); self.0[0] ^= mask_vec & (self.0[0] ^ other.0[0]); self.0[1] ^= mask_vec & (self.0[1] ^ other.0[1]); self.0[2] ^= mask_vec & (self.0[2] ^ other.0[2]); self.0[3] ^= mask_vec & (self.0[3] ^ other.0[3]); self.0[4] ^= mask_vec & (self.0[4] ^ other.0[4]); } } impl FieldElement2625x4 { /// Split this vector into an array of four (serial) field /// elements. pub fn split(&self) -> [FieldElement51; 4] { let mut out = [FieldElement51::zero(); 4]; for i in 0..5 { let a_2i = self.0[i].extract(0) as u64; // let b_2i = self.0[i].extract(1) as u64; // let a_2i_1 = self.0[i].extract(2) as u64; // `. let b_2i_1 = self.0[i].extract(3) as u64; // | pre-swapped to avoid let c_2i = self.0[i].extract(4) as u64; // | a cross lane shuffle let d_2i = self.0[i].extract(5) as u64; // .' let c_2i_1 = self.0[i].extract(6) as u64; // let d_2i_1 = self.0[i].extract(7) as u64; // out[0].0[i] = a_2i + (a_2i_1 << 26); out[1].0[i] = b_2i + (b_2i_1 << 26); out[2].0[i] = c_2i + (c_2i_1 << 26); out[3].0[i] = d_2i + (d_2i_1 << 26); } out } /// Rearrange the elements of this vector according to `control`. /// /// The `control` parameter should be a compile-time constant, so /// that when this function is inlined, LLVM is able to lower the /// shuffle using an immediate. #[inline] pub fn shuffle(&self, control: Shuffle) -> FieldElement2625x4 { #[inline(always)] fn shuffle_lanes(x: u32x8, control: Shuffle) -> u32x8 { unsafe { use core::arch::x86_64::_mm256_permutevar8x32_epi32; let c: u32x8 = match control { Shuffle::AAAA => u32x8::new(0, 0, 2, 2, 0, 0, 2, 2), Shuffle::BBBB => u32x8::new(1, 1, 3, 3, 1, 1, 3, 3), Shuffle::CACA => u32x8::new(4, 0, 6, 2, 4, 0, 6, 2), Shuffle::DBBD => u32x8::new(5, 1, 7, 3, 1, 5, 3, 7), Shuffle::ADDA => u32x8::new(0, 5, 2, 7, 5, 0, 7, 2), Shuffle::CBCB => u32x8::new(4, 1, 6, 3, 4, 1, 6, 3), Shuffle::ABAB => u32x8::new(0, 1, 2, 3, 0, 1, 2, 3), Shuffle::BADC => u32x8::new(1, 0, 3, 2, 5, 4, 7, 6), Shuffle::BACD => u32x8::new(1, 0, 3, 2, 4, 5, 6, 7), Shuffle::ABDC => u32x8::new(0, 1, 2, 3, 5, 4, 7, 6), }; // Note that this gets turned into a generic LLVM // shuffle-by-constants, which can be lowered to a simpler // instruction than a generic permute. _mm256_permutevar8x32_epi32(x.into_bits(), c.into_bits()).into_bits() } } FieldElement2625x4([ shuffle_lanes(self.0[0], control), shuffle_lanes(self.0[1], control), shuffle_lanes(self.0[2], control), shuffle_lanes(self.0[3], control), shuffle_lanes(self.0[4], control), ]) } /// Blend `self` with `other`, taking lanes specified in `control` from `other`. /// /// The `control` parameter should be a compile-time constant, so /// that this function can be inlined and LLVM can lower it to a /// blend instruction using an immediate. #[inline] pub fn blend(&self, other: FieldElement2625x4, control: Lanes) -> FieldElement2625x4 { #[inline(always)] fn blend_lanes(x: u32x8, y: u32x8, control: Lanes) -> u32x8 { unsafe { use core::arch::x86_64::_mm256_blend_epi32; // This would be much cleaner if we could factor out the match // statement on the control. Unfortunately, rustc forgets // constant-info very quickly, so we can't even write // ``` // match control { // Lanes::C => { // let imm = C_LANES as i32; // _mm256_blend_epi32(..., imm) // ``` // let alone // ``` // let imm = match control { // Lanes::C => C_LANES as i32, // } // _mm256_blend_epi32(..., imm) // ``` // even though both of these would be constant-folded by LLVM // at a lower level (as happens in the shuffle implementation, // which does not require a shuffle immediate but *is* lowered // to immediate shuffles anyways). match control { Lanes::C => { _mm256_blend_epi32(x.into_bits(), y.into_bits(), C_LANES as i32).into_bits() } Lanes::D => { _mm256_blend_epi32(x.into_bits(), y.into_bits(), D_LANES as i32).into_bits() } Lanes::AD => { _mm256_blend_epi32(x.into_bits(), y.into_bits(), (A_LANES | D_LANES) as i32) .into_bits() } Lanes::AB => { _mm256_blend_epi32(x.into_bits(), y.into_bits(), (A_LANES | B_LANES) as i32) .into_bits() } Lanes::AC => { _mm256_blend_epi32(x.into_bits(), y.into_bits(), (A_LANES | C_LANES) as i32) .into_bits() } Lanes::CD => { _mm256_blend_epi32(x.into_bits(), y.into_bits(), (C_LANES | D_LANES) as i32) .into_bits() } Lanes::BC => { _mm256_blend_epi32(x.into_bits(), y.into_bits(), (B_LANES | C_LANES) as i32) .into_bits() } Lanes::ABCD => _mm256_blend_epi32( x.into_bits(), y.into_bits(), (A_LANES | B_LANES | C_LANES | D_LANES) as i32, ).into_bits(), } } } FieldElement2625x4([ blend_lanes(self.0[0], other.0[0], control), blend_lanes(self.0[1], other.0[1], control), blend_lanes(self.0[2], other.0[2], control), blend_lanes(self.0[3], other.0[3], control), blend_lanes(self.0[4], other.0[4], control), ]) } /// Construct a vector of zeros. pub fn zero() -> FieldElement2625x4 { FieldElement2625x4([u32x8::splat(0); 5]) } /// Convenience wrapper around `new(x,x,x,x)`. pub fn splat(x: &FieldElement51) -> FieldElement2625x4 { FieldElement2625x4::new(x, x, x, x) } /// Create a `FieldElement2625x4` from four `FieldElement51`s. /// /// # Postconditions /// /// The resulting `FieldElement2625x4` is bounded with \\( b < 0.0002 \\). pub fn new( x0: &FieldElement51, x1: &FieldElement51, x2: &FieldElement51, x3: &FieldElement51, ) -> FieldElement2625x4 { let mut buf = [u32x8::splat(0); 5]; let low_26_bits = (1 << 26) - 1; for i in 0..5 { let a_2i = (x0.0[i] & low_26_bits) as u32; let a_2i_1 = (x0.0[i] >> 26) as u32; let b_2i = (x1.0[i] & low_26_bits) as u32; let b_2i_1 = (x1.0[i] >> 26) as u32; let c_2i = (x2.0[i] & low_26_bits) as u32; let c_2i_1 = (x2.0[i] >> 26) as u32; let d_2i = (x3.0[i] & low_26_bits) as u32; let d_2i_1 = (x3.0[i] >> 26) as u32; buf[i] = u32x8::new(a_2i, b_2i, a_2i_1, b_2i_1, c_2i, d_2i, c_2i_1, d_2i_1); } // We don't know that the original `FieldElement51`s were // fully reduced, so the odd limbs may exceed 2^25. // Reduce them to be sure. FieldElement2625x4(buf).reduce() } /// Given \\((A,B,C,D)\\), compute \\((-A,-B,-C,-D)\\), without /// performing a reduction. /// /// # Preconditions /// /// The coefficients of `self` must be bounded with \\( b < 0.999 \\). /// /// # Postconditions /// /// The coefficients of the result are bounded with \\( b < 1 \\). #[inline] pub fn negate_lazy(&self) -> FieldElement2625x4 { // The limbs of self are bounded with b < 0.999, while the // smallest limb of 2*p is 67108845 > 2^{26+0.9999}, so // underflows are not possible. FieldElement2625x4([ P_TIMES_2_LO - self.0[0], P_TIMES_2_HI - self.0[1], P_TIMES_2_HI - self.0[2], P_TIMES_2_HI - self.0[3], P_TIMES_2_HI - self.0[4], ]) } /// Given `self = (A,B,C,D)`, compute `(B - A, B + A, D - C, D + C)`. /// /// # Preconditions /// /// The coefficients of `self` must be bounded with \\( b < 0.01 \\). /// /// # Postconditions /// /// The coefficients of the result are bounded with \\( b < 1.6 \\). #[inline] pub fn diff_sum(&self) -> FieldElement2625x4 { // tmp1 = (B, A, D, C) let tmp1 = self.shuffle(Shuffle::BADC); // tmp2 = (-A, B, -C, D) let tmp2 = self.blend(self.negate_lazy(), Lanes::AC); // (B - A, B + A, D - C, D + C) bounded with b < 1.6 tmp1 + tmp2 } /// Reduce this vector of field elements \\(\mathrm{mod} p\\). /// /// # Postconditions /// /// The coefficients of the result are bounded with \\( b < 0.0002 \\). #[inline] pub fn reduce(&self) -> FieldElement2625x4 { let shifts = i32x8::new(26, 26, 25, 25, 26, 26, 25, 25); let masks = u32x8::new( (1 << 26) - 1, (1 << 26) - 1, (1 << 25) - 1, (1 << 25) - 1, (1 << 26) - 1, (1 << 26) - 1, (1 << 25) - 1, (1 << 25) - 1, ); // Let c(x) denote the carryout of the coefficient x. // // Given ( x0, y0, x1, y1, z0, w0, z1, w1), // compute (c(x1), c(y1), c(x0), c(y0), c(z1), c(w1), c(z0), c(w0)). // // The carryouts are bounded by 2^(32 - 25) = 2^7. let rotated_carryout = |v: u32x8| -> u32x8 { unsafe { use core::arch::x86_64::_mm256_srlv_epi32; use core::arch::x86_64::_mm256_shuffle_epi32; let c = _mm256_srlv_epi32(v.into_bits(), shifts.into_bits()); _mm256_shuffle_epi32(c, 0b01_00_11_10).into_bits() } }; // Combine (lo, lo, lo, lo, lo, lo, lo, lo) // with (hi, hi, hi, hi, hi, hi, hi, hi) // to (lo, lo, hi, hi, lo, lo, hi, hi) // // This allows combining carryouts, e.g., // // lo (c(x1), c(y1), c(x0), c(y0), c(z1), c(w1), c(z0), c(w0)) // hi (c(x3), c(y3), c(x2), c(y2), c(z3), c(w3), c(z2), c(w2)) // -> (c(x1), c(y1), c(x2), c(y2), c(z1), c(w1), c(z2), c(w2)) // // which is exactly the vector of carryins for // // ( x2, y2, x3, y3, z2, w2, z3, w3). // let combine = |v_lo: u32x8, v_hi: u32x8| -> u32x8 { unsafe { use core::arch::x86_64::_mm256_blend_epi32; _mm256_blend_epi32(v_lo.into_bits(), v_hi.into_bits(), 0b11_00_11_00).into_bits() } }; let mut v = self.0; let c10 = rotated_carryout(v[0]); v[0] = (v[0] & masks) + combine(u32x8::splat(0), c10); let c32 = rotated_carryout(v[1]); v[1] = (v[1] & masks) + combine(c10, c32); let c54 = rotated_carryout(v[2]); v[2] = (v[2] & masks) + combine(c32, c54); let c76 = rotated_carryout(v[3]); v[3] = (v[3] & masks) + combine(c54, c76); let c98 = rotated_carryout(v[4]); v[4] = (v[4] & masks) + combine(c76, c98); let c9_19: u32x8 = unsafe { use core::arch::x86_64::_mm256_mul_epu32; use core::arch::x86_64::_mm256_shuffle_epi32; // Need to rearrange c98, since vpmuludq uses the low // 32-bits of each 64-bit lane to compute the product: // // c98 = (c(x9), c(y9), c(x8), c(y8), c(z9), c(w9), c(z8), c(w8)); // c9_spread = (c(x9), c(x8), c(y9), c(y8), c(z9), c(z8), c(w9), c(w8)). let c9_spread = _mm256_shuffle_epi32(c98.into_bits(), 0b11_01_10_00); // Since the carryouts are bounded by 2^7, their products with 19 // are bounded by 2^11.25. This means that // // c9_19_spread = (19*c(x9), 0, 19*c(y9), 0, 19*c(z9), 0, 19*c(w9), 0). let c9_19_spread = _mm256_mul_epu32(c9_spread, u64x4::splat(19).into_bits()); // Unshuffle: // c9_19 = (19*c(x9), 19*c(y9), 0, 0, 19*c(z9), 19*c(w9), 0, 0). _mm256_shuffle_epi32(c9_19_spread, 0b11_01_10_00).into_bits() }; // Add the final carryin. v[0] = v[0] + c9_19; // Each output coefficient has exactly one carryin, which is // bounded by 2^11.25, so they are bounded as // // c_even < 2^26 + 2^11.25 < 26.00006 < 2^{26+b} // c_odd < 2^25 + 2^11.25 < 25.0001 < 2^{25+b} // // where b = 0.0002. FieldElement2625x4(v) } /// Given an array of wide coefficients, reduce them to a `FieldElement2625x4`. /// /// # Postconditions /// /// The coefficients of the result are bounded with \\( b < 0.007 \\). #[inline] fn reduce64(mut z: [u64x4; 10]) -> FieldElement2625x4 { // These aren't const because splat isn't a const fn let LOW_25_BITS: u64x4 = u64x4::splat((1 << 25) - 1); let LOW_26_BITS: u64x4 = u64x4::splat((1 << 26) - 1); // Carry the value from limb i = 0..8 to limb i+1 let carry = |z: &mut [u64x4; 10], i: usize| { debug_assert!(i < 9); if i % 2 == 0 { // Even limbs have 26 bits z[i + 1] = z[i + 1] + (z[i] >> 26); z[i] = z[i] & LOW_26_BITS; } else { // Odd limbs have 25 bits z[i + 1] = z[i + 1] + (z[i] >> 25); z[i] = z[i] & LOW_25_BITS; } }; // Perform two halves of the carry chain in parallel. carry(&mut z, 0); carry(&mut z, 4); carry(&mut z, 1); carry(&mut z, 5); carry(&mut z, 2); carry(&mut z, 6); carry(&mut z, 3); carry(&mut z, 7); // Since z[3] < 2^64, c < 2^(64-25) = 2^39, // so z[4] < 2^26 + 2^39 < 2^39.0002 carry(&mut z, 4); carry(&mut z, 8); // Now z[4] < 2^26 // and z[5] < 2^25 + 2^13.0002 < 2^25.0004 (good enough) // Last carry has a multiplication by 19. In the serial case we // do a 64-bit multiplication by 19, but here we want to do a // 32-bit multiplication. However, if we only know z[9] < 2^64, // the carry is bounded as c < 2^(64-25) = 2^39, which is too // big. To ensure c < 2^32, we would need z[9] < 2^57. // Instead, we split the carry in two, with c = c_0 + c_1*2^26. let c = z[9] >> 25; z[9] = z[9] & LOW_25_BITS; let mut c0: u64x4 = c & LOW_26_BITS; // c0 < 2^26; let mut c1: u64x4 = c >> 26; // c1 < 2^(39-26) = 2^13; unsafe { use core::arch::x86_64::_mm256_mul_epu32; let x19 = u64x4::splat(19); c0 = _mm256_mul_epu32(c0.into_bits(), x19.into_bits()).into_bits(); // c0 < 2^30.25 c1 = _mm256_mul_epu32(c1.into_bits(), x19.into_bits()).into_bits(); // c1 < 2^17.25 } z[0] = z[0] + c0; // z0 < 2^26 + 2^30.25 < 2^30.33 z[1] = z[1] + c1; // z1 < 2^25 + 2^17.25 < 2^25.0067 carry(&mut z, 0); // z0 < 2^26, z1 < 2^25.0067 + 2^4.33 = 2^25.007 // The output coefficients are bounded with // // b = 0.007 for z[1] // b = 0.0004 for z[5] // b = 0 for other z[i]. // // So the packed result is bounded with b = 0.007. FieldElement2625x4([ repack_pair(z[0].into_bits(), z[1].into_bits()), repack_pair(z[2].into_bits(), z[3].into_bits()), repack_pair(z[4].into_bits(), z[5].into_bits()), repack_pair(z[6].into_bits(), z[7].into_bits()), repack_pair(z[8].into_bits(), z[9].into_bits()), ]) } /// Square this field element, and negate the result's \\(D\\) value. /// /// # Preconditions /// /// The coefficients of `self` must be bounded with \\( b < 1.5 \\). /// /// # Postconditions /// /// The coefficients of the result are bounded with \\( b < 0.007 \\). pub fn square_and_negate_D(&self) -> FieldElement2625x4 { #[inline(always)] fn m(x: u32x8, y: u32x8) -> u64x4 { use core::arch::x86_64::_mm256_mul_epu32; unsafe { _mm256_mul_epu32(x.into_bits(), y.into_bits()).into_bits() } } #[inline(always)] fn m_lo(x: u32x8, y: u32x8) -> u32x8 { use core::arch::x86_64::_mm256_mul_epu32; unsafe { _mm256_mul_epu32(x.into_bits(), y.into_bits()).into_bits() } } let v19 = u32x8::new(19, 0, 19, 0, 19, 0, 19, 0); let (x0, x1) = unpack_pair(self.0[0]); let (x2, x3) = unpack_pair(self.0[1]); let (x4, x5) = unpack_pair(self.0[2]); let (x6, x7) = unpack_pair(self.0[3]); let (x8, x9) = unpack_pair(self.0[4]); let x0_2 = x0 << 1; let x1_2 = x1 << 1; let x2_2 = x2 << 1; let x3_2 = x3 << 1; let x4_2 = x4 << 1; let x5_2 = x5 << 1; let x6_2 = x6 << 1; let x7_2 = x7 << 1; let x5_19 = m_lo(v19, x5); let x6_19 = m_lo(v19, x6); let x7_19 = m_lo(v19, x7); let x8_19 = m_lo(v19, x8); let x9_19 = m_lo(v19, x9); let mut z0 = m(x0, x0) + m(x2_2,x8_19) + m(x4_2,x6_19) + ((m(x1_2,x9_19) + m(x3_2,x7_19) + m(x5,x5_19)) << 1); let mut z1 = m(x0_2,x1) + m(x3_2,x8_19) + m(x5_2,x6_19) + ((m(x2,x9_19) + m(x4,x7_19)) << 1); let mut z2 = m(x0_2,x2) + m(x1_2,x1) + m(x4_2,x8_19) + m(x6,x6_19) + ((m(x3_2,x9_19) + m(x5_2,x7_19)) << 1); let mut z3 = m(x0_2,x3) + m(x1_2,x2) + m(x5_2,x8_19) + ((m(x4,x9_19) + m(x6,x7_19)) << 1); let mut z4 = m(x0_2,x4) + m(x1_2,x3_2) + m(x2, x2) + m(x6_2,x8_19) + ((m(x5_2,x9_19) + m(x7,x7_19)) << 1); let mut z5 = m(x0_2,x5) + m(x1_2,x4) + m(x2_2,x3) + m(x7_2,x8_19) + ((m(x6,x9_19)) << 1); let mut z6 = m(x0_2,x6) + m(x1_2,x5_2) + m(x2_2,x4) + m(x3_2,x3) + m(x8,x8_19) + ((m(x7_2,x9_19)) << 1); let mut z7 = m(x0_2,x7) + m(x1_2,x6) + m(x2_2,x5) + m(x3_2,x4) + ((m(x8,x9_19)) << 1); let mut z8 = m(x0_2,x8) + m(x1_2,x7_2) + m(x2_2,x6) + m(x3_2,x5_2) + m(x4,x4) + ((m(x9,x9_19)) << 1); let mut z9 = m(x0_2,x9) + m(x1_2,x8) + m(x2_2,x7) + m(x3_2,x6) + m(x4_2,x5); // The biggest z_i is bounded as z_i < 249*2^(51 + 2*b); // if b < 1.5 we get z_i < 4485585228861014016. // // The limbs of the multiples of p are bounded above by // // 0x3fffffff << 37 = 9223371899415822336 < 2^63 // // and below by // // 0x1fffffff << 37 = 4611685880988434432 // > 4485585228861014016 // // So these multiples of p are big enough to avoid underflow // in subtraction, and small enough to fit within u64 // with room for a carry. let low__p37 = u64x4::splat(0x3ffffed << 37); let even_p37 = u64x4::splat(0x3ffffff << 37); let odd__p37 = u64x4::splat(0x1ffffff << 37); let negate_D = |x: u64x4, p: u64x4| -> u64x4 { unsafe { use core::arch::x86_64::_mm256_blend_epi32; _mm256_blend_epi32(x.into_bits(), (p - x).into_bits(), D_LANES64 as i32).into_bits() } }; z0 = negate_D(z0, low__p37); z1 = negate_D(z1, odd__p37); z2 = negate_D(z2, even_p37); z3 = negate_D(z3, odd__p37); z4 = negate_D(z4, even_p37); z5 = negate_D(z5, odd__p37); z6 = negate_D(z6, even_p37); z7 = negate_D(z7, odd__p37); z8 = negate_D(z8, even_p37); z9 = negate_D(z9, odd__p37); FieldElement2625x4::reduce64([z0, z1, z2, z3, z4, z5, z6, z7, z8, z9]) } } impl Neg for FieldElement2625x4 { type Output = FieldElement2625x4; /// Negate this field element, performing a reduction. /// /// If the coefficients are known to be small, use `negate_lazy` /// to avoid performing a reduction. /// /// # Preconditions /// /// The coefficients of `self` must be bounded with \\( b < 4.0 \\). /// /// # Postconditions /// /// The coefficients of the result are bounded with \\( b < 0.0002 \\). #[inline] fn neg(self) -> FieldElement2625x4 { FieldElement2625x4([ P_TIMES_16_LO - self.0[0], P_TIMES_16_HI - self.0[1], P_TIMES_16_HI - self.0[2], P_TIMES_16_HI - self.0[3], P_TIMES_16_HI - self.0[4], ]).reduce() } } impl Add<FieldElement2625x4> for FieldElement2625x4 { type Output = FieldElement2625x4; /// Add two `FieldElement2625x4`s, without performing a reduction. #[inline] fn add(self, rhs: FieldElement2625x4) -> FieldElement2625x4 { FieldElement2625x4([ self.0[0] + rhs.0[0], self.0[1] + rhs.0[1], self.0[2] + rhs.0[2], self.0[3] + rhs.0[3], self.0[4] + rhs.0[4], ]) } } impl Mul<(u32, u32, u32, u32)> for FieldElement2625x4 { type Output = FieldElement2625x4; /// Perform a multiplication by a vector of small constants. /// /// # Postconditions /// /// The coefficients of the result are bounded with \\( b < 0.007 \\). #[inline] fn mul(self, scalars: (u32, u32, u32, u32)) -> FieldElement2625x4 { unsafe { use core::arch::x86_64::_mm256_mul_epu32; let consts = u32x8::new(scalars.0, 0, scalars.1, 0, scalars.2, 0, scalars.3, 0); let (b0, b1) = unpack_pair(self.0[0]); let (b2, b3) = unpack_pair(self.0[1]); let (b4, b5) = unpack_pair(self.0[2]); let (b6, b7) = unpack_pair(self.0[3]); let (b8, b9) = unpack_pair(self.0[4]); FieldElement2625x4::reduce64([ _mm256_mul_epu32(b0.into_bits(), consts.into_bits()).into_bits(), _mm256_mul_epu32(b1.into_bits(), consts.into_bits()).into_bits(), _mm256_mul_epu32(b2.into_bits(), consts.into_bits()).into_bits(), _mm256_mul_epu32(b3.into_bits(), consts.into_bits()).into_bits(), _mm256_mul_epu32(b4.into_bits(), consts.into_bits()).into_bits(), _mm256_mul_epu32(b5.into_bits(), consts.into_bits()).into_bits(), _mm256_mul_epu32(b6.into_bits(), consts.into_bits()).into_bits(), _mm256_mul_epu32(b7.into_bits(), consts.into_bits()).into_bits(), _mm256_mul_epu32(b8.into_bits(), consts.into_bits()).into_bits(), _mm256_mul_epu32(b9.into_bits(), consts.into_bits()).into_bits(), ]) } } } impl<'a, 'b> Mul<&'b FieldElement2625x4> for &'a FieldElement2625x4 { type Output = FieldElement2625x4; /// Multiply `self` by `rhs`. /// /// # Preconditions /// /// The coefficients of `self` must be bounded with \\( b < 2.5 \\). /// /// The coefficients of `rhs` must be bounded with \\( b < 1.75 \\). /// /// # Postconditions /// /// The coefficients of the result are bounded with \\( b < 0.007 \\). /// fn mul(self, rhs: &'b FieldElement2625x4) -> FieldElement2625x4 { #[inline(always)] fn m(x: u32x8, y: u32x8) -> u64x4 { use core::arch::x86_64::_mm256_mul_epu32; unsafe { _mm256_mul_epu32(x.into_bits(), y.into_bits()).into_bits() } } #[inline(always)] fn m_lo(x: u32x8, y: u32x8) -> u32x8 { use core::arch::x86_64::_mm256_mul_epu32; unsafe { _mm256_mul_epu32(x.into_bits(), y.into_bits()).into_bits() } } let (x0, x1) = unpack_pair(self.0[0]); let (x2, x3) = unpack_pair(self.0[1]); let (x4, x5) = unpack_pair(self.0[2]); let (x6, x7) = unpack_pair(self.0[3]); let (x8, x9) = unpack_pair(self.0[4]); let (y0, y1) = unpack_pair(rhs.0[0]); let (y2, y3) = unpack_pair(rhs.0[1]); let (y4, y5) = unpack_pair(rhs.0[2]); let (y6, y7) = unpack_pair(rhs.0[3]); let (y8, y9) = unpack_pair(rhs.0[4]); let v19 = u32x8::new(19, 0, 19, 0, 19, 0, 19, 0); let y1_19 = m_lo(v19, y1); // This fits in a u32 let y2_19 = m_lo(v19, y2); // iff 26 + b + lg(19) < 32 let y3_19 = m_lo(v19, y3); // if b < 32 - 26 - 4.248 = 1.752 let y4_19 = m_lo(v19, y4); let y5_19 = m_lo(v19, y5); let y6_19 = m_lo(v19, y6); let y7_19 = m_lo(v19, y7); let y8_19 = m_lo(v19, y8); let y9_19 = m_lo(v19, y9); let x1_2 = x1 + x1; // This fits in a u32 iff 25 + b + 1 < 32 let x3_2 = x3 + x3; // iff b < 6 let x5_2 = x5 + x5; let x7_2 = x7 + x7; let x9_2 = x9 + x9; let z0 = m(x0,y0) + m(x1_2,y9_19) + m(x2,y8_19) + m(x3_2,y7_19) + m(x4,y6_19) + m(x5_2,y5_19) + m(x6,y4_19) + m(x7_2,y3_19) + m(x8,y2_19) + m(x9_2,y1_19); let z1 = m(x0,y1) + m(x1,y0) + m(x2,y9_19) + m(x3,y8_19) + m(x4,y7_19) + m(x5,y6_19) + m(x6,y5_19) + m(x7,y4_19) + m(x8,y3_19) + m(x9,y2_19); let z2 = m(x0,y2) + m(x1_2,y1) + m(x2,y0) + m(x3_2,y9_19) + m(x4,y8_19) + m(x5_2,y7_19) + m(x6,y6_19) + m(x7_2,y5_19) + m(x8,y4_19) + m(x9_2,y3_19); let z3 = m(x0,y3) + m(x1,y2) + m(x2,y1) + m(x3,y0) + m(x4,y9_19) + m(x5,y8_19) + m(x6,y7_19) + m(x7,y6_19) + m(x8,y5_19) + m(x9,y4_19); let z4 = m(x0,y4) + m(x1_2,y3) + m(x2,y2) + m(x3_2,y1) + m(x4,y0) + m(x5_2,y9_19) + m(x6,y8_19) + m(x7_2,y7_19) + m(x8,y6_19) + m(x9_2,y5_19); let z5 = m(x0,y5) + m(x1,y4) + m(x2,y3) + m(x3,y2) + m(x4,y1) + m(x5,y0) + m(x6,y9_19) + m(x7,y8_19) + m(x8,y7_19) + m(x9,y6_19); let z6 = m(x0,y6) + m(x1_2,y5) + m(x2,y4) + m(x3_2,y3) + m(x4,y2) + m(x5_2,y1) + m(x6,y0) + m(x7_2,y9_19) + m(x8,y8_19) + m(x9_2,y7_19); let z7 = m(x0,y7) + m(x1,y6) + m(x2,y5) + m(x3,y4) + m(x4,y3) + m(x5,y2) + m(x6,y1) + m(x7,y0) + m(x8,y9_19) + m(x9,y8_19); let z8 = m(x0,y8) + m(x1_2,y7) + m(x2,y6) + m(x3_2,y5) + m(x4,y4) + m(x5_2,y3) + m(x6,y2) + m(x7_2,y1) + m(x8,y0) + m(x9_2,y9_19); let z9 = m(x0,y9) + m(x1,y8) + m(x2,y7) + m(x3,y6) + m(x4,y5) + m(x5,y4) + m(x6,y3) + m(x7,y2) + m(x8,y1) + m(x9,y0); // The bounds on z[i] are the same as in the serial 32-bit code // and the comment below is copied from there: // How big is the contribution to z[i+j] from x[i], y[j]? // // Using the bounds above, we get: // // i even, j even: x[i]*y[j] < 2^(26+b)*2^(26+b) = 2*2^(51+2*b) // i odd, j even: x[i]*y[j] < 2^(25+b)*2^(26+b) = 1*2^(51+2*b) // i even, j odd: x[i]*y[j] < 2^(26+b)*2^(25+b) = 1*2^(51+2*b) // i odd, j odd: 2*x[i]*y[j] < 2*2^(25+b)*2^(25+b) = 1*2^(51+2*b) // // We perform inline reduction mod p by replacing 2^255 by 19 // (since 2^255 - 19 = 0 mod p). This adds a factor of 19, so // we get the bounds (z0 is the biggest one, but calculated for // posterity here in case finer estimation is needed later): // // z0 < ( 2 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 249*2^(51 + 2*b) // z1 < ( 1 + 1 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) = 154*2^(51 + 2*b) // z2 < ( 2 + 1 + 2 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 195*2^(51 + 2*b) // z3 < ( 1 + 1 + 1 + 1 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) = 118*2^(51 + 2*b) // z4 < ( 2 + 1 + 2 + 1 + 2 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 141*2^(51 + 2*b) // z5 < ( 1 + 1 + 1 + 1 + 1 + 1 + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) = 82*2^(51 + 2*b) // z6 < ( 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 87*2^(51 + 2*b) // z7 < ( 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1*19 + 1*19 )*2^(51 + 2b) = 46*2^(51 + 2*b) // z8 < ( 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1*19 )*2^(51 + 2b) = 33*2^(51 + 2*b) // z9 < ( 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 )*2^(51 + 2b) = 10*2^(51 + 2*b) // // So z[0] fits into a u64 if 51 + 2*b + lg(249) < 64 // if b < 2.5. // In fact this bound is slightly sloppy, since it treats both // inputs x and y as being bounded by the same parameter b, // while they are in fact bounded by b_x and b_y, and we // already require that b_y < 1.75 in order to fit the // multiplications by 19 into a u32. The tighter bound on b_y // means we could get a tighter bound on the outputs, or a // looser bound on b_x. FieldElement2625x4::reduce64([z0, z1, z2, z3, z4, z5, z6, z7, z8, z9]) } } #[cfg(test)] mod test { use super::*; #[test] fn scale_by_curve_constants() { let mut x = FieldElement2625x4::splat(&FieldElement51::one()); x = x * (121666, 121666, 2*121666, 2*121665); let xs = x.split(); assert_eq!(xs[0], FieldElement51([121666, 0, 0, 0, 0])); assert_eq!(xs[1], FieldElement51([121666, 0, 0, 0, 0])); assert_eq!(xs[2], FieldElement51([2 * 121666, 0, 0, 0, 0])); assert_eq!(xs[3], FieldElement51([2 * 121665, 0, 0, 0, 0])); } #[test] fn diff_sum_vs_serial() { let x0 = FieldElement51([10000, 10001, 10002, 10003, 10004]); let x1 = FieldElement51([10100, 10101, 10102, 10103, 10104]); let x2 = FieldElement51([10200, 10201, 10202, 10203, 10204]); let x3 = FieldElement51([10300, 10301, 10302, 10303, 10304]); let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3).diff_sum(); let result = vec.split(); assert_eq!(result[0], &x1 - &x0); assert_eq!(result[1], &x1 + &x0); assert_eq!(result[2], &x3 - &x2); assert_eq!(result[3], &x3 + &x2); } #[test] fn square_vs_serial() { let x0 = FieldElement51([10000, 10001, 10002, 10003, 10004]); let x1 = FieldElement51([10100, 10101, 10102, 10103, 10104]); let x2 = FieldElement51([10200, 10201, 10202, 10203, 10204]); let x3 = FieldElement51([10300, 10301, 10302, 10303, 10304]); let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3); let result = vec.square_and_negate_D().split(); assert_eq!(result[0], &x0 * &x0); assert_eq!(result[1], &x1 * &x1); assert_eq!(result[2], &x2 * &x2); assert_eq!(result[3], -&(&x3 * &x3)); } #[test] fn multiply_vs_serial() { let x0 = FieldElement51([10000, 10001, 10002, 10003, 10004]); let x1 = FieldElement51([10100, 10101, 10102, 10103, 10104]); let x2 = FieldElement51([10200, 10201, 10202, 10203, 10204]); let x3 = FieldElement51([10300, 10301, 10302, 10303, 10304]); let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3); let vecprime = vec.clone(); let result = (&vec * &vecprime).split(); assert_eq!(result[0], &x0 * &x0); assert_eq!(result[1], &x1 * &x1); assert_eq!(result[2], &x2 * &x2); assert_eq!(result[3], &x3 * &x3); } #[test] fn test_unpack_repack_pair() { let x0 = FieldElement51([10000 + (10001 << 26), 0, 0, 0, 0]); let x1 = FieldElement51([10100 + (10101 << 26), 0, 0, 0, 0]); let x2 = FieldElement51([10200 + (10201 << 26), 0, 0, 0, 0]); let x3 = FieldElement51([10300 + (10301 << 26), 0, 0, 0, 0]); let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3); let src = vec.0[0]; let (a, b) = unpack_pair(src); let expected_a = u32x8::new(10000, 0, 10100, 0, 10200, 0, 10300, 0); let expected_b = u32x8::new(10001, 0, 10101, 0, 10201, 0, 10301, 0); assert_eq!(a, expected_a); assert_eq!(b, expected_b); let expected_src = repack_pair(a, b); assert_eq!(src, expected_src); } #[test] fn new_split_roundtrips() { let x0 = FieldElement51::from_bytes(&[0x10; 32]); let x1 = FieldElement51::from_bytes(&[0x11; 32]); let x2 = FieldElement51::from_bytes(&[0x12; 32]); let x3 = FieldElement51::from_bytes(&[0x13; 32]); let vec = FieldElement2625x4::new(&x0, &x1, &x2, &x3); let splits = vec.split(); assert_eq!(x0, splits[0]); assert_eq!(x1, splits[1]); assert_eq!(x2, splits[2]); assert_eq!(x3, splits[3]); } }