src/edwards.rs (867 lines of code) (raw):

// -*- mode: rust; -*- // // This file is part of curve25519-dalek. // Copyright (c) 2016-2019 Isis Lovecruft, Henry de Valence // See LICENSE for licensing information. // // Authors: // - Isis Agora Lovecruft <isis@patternsinthevoid.net> // - Henry de Valence <hdevalence@hdevalence.ca> //! Group operations for Curve25519, in Edwards form. //! //! ## Encoding and Decoding //! //! Encoding is done by converting to and from a `CompressedEdwardsY` //! struct, which is a typed wrapper around `[u8; 32]`. //! //! ## Equality Testing //! //! The `EdwardsPoint` struct implements the `subtle::ConstantTimeEq` //! trait for constant-time equality checking, and the Rust `Eq` trait //! for variable-time equality checking. //! //! ## Cofactor-related functions //! //! The order of the group of points on the curve \\(\mathcal E\\) //! is \\(|\mathcal E| = 8\ell \\), so its structure is \\( \mathcal //! E = \mathcal E[8] \times \mathcal E[\ell]\\). The torsion //! subgroup \\( \mathcal E[8] \\) consists of eight points of small //! order. Technically, all of \\(\mathcal E\\) is torsion, but we //! use the word only to refer to the small \\(\mathcal E[8]\\) part, not //! the large prime-order \\(\mathcal E[\ell]\\) part. //! //! To test if a point is in \\( \mathcal E[8] \\), use //! `EdwardsPoint::is_small_order()`. //! //! To test if a point is in \\( \mathcal E[\ell] \\), use //! `EdwardsPoint::is_torsion_free()`. //! //! To multiply by the cofactor, use `EdwardsPoint::mul_by_cofactor()`. //! //! To avoid dealing with cofactors entirely, consider using Ristretto. //! //! ## Scalars //! //! Scalars are represented by the `Scalar` struct. To construct a scalar with a specific bit //! pattern, see `Scalar::from_bits()`. //! //! ## Scalar Multiplication //! //! Scalar multiplication on Edwards points is provided by: //! //! * the `*` operator between a `Scalar` and a `EdwardsPoint`, which //! performs constant-time variable-base scalar multiplication; //! //! * the `*` operator between a `Scalar` and a //! `EdwardsBasepointTable`, which performs constant-time fixed-base //! scalar multiplication; //! //! * an implementation of the //! [`MultiscalarMul`](../traits/trait.MultiscalarMul.html) trait for //! constant-time variable-base multiscalar multiplication; //! //! * an implementation of the //! [`VartimeMultiscalarMul`](../traits/trait.VartimeMultiscalarMul.html) //! trait for variable-time variable-base multiscalar multiplication; //! //! ## Implementation //! //! The Edwards arithmetic is implemented using the “extended twisted //! coordinates” of Hisil, Wong, Carter, and Dawson, and the //! corresponding complete formulas. For more details, //! see the [`curve_models` submodule][curve_models] //! of the internal documentation. //! //! ## Validity Checking //! //! There is no function for checking whether a point is valid. //! Instead, the `EdwardsPoint` struct is guaranteed to hold a valid //! point on the curve. //! //! We use the Rust type system to make invalid points //! unrepresentable: `EdwardsPoint` objects can only be created via //! successful decompression of a compressed point, or else by //! operations on other (valid) `EdwardsPoint`s. //! //! [curve_models]: https://doc-internal.dalek.rs/curve25519_dalek_fiat/backend/serial/curve_models/index.html // We allow non snake_case names because coordinates in projective space are // traditionally denoted by the capitalisation of their respective // counterparts in affine space. Yeah, you heard me, rustc, I'm gonna have my // affine and projective cakes and eat both of them too. #![allow(non_snake_case)] use core::borrow::Borrow; use core::fmt::Debug; use core::iter::Iterator; use core::iter::Sum; use core::ops::{Add, Neg, Sub}; use core::ops::{AddAssign, SubAssign}; use core::ops::{Mul, MulAssign}; use subtle::Choice; use subtle::ConditionallyNegatable; use subtle::ConditionallySelectable; use subtle::ConstantTimeEq; use constants; use field::FieldElement; use scalar::Scalar; use montgomery::MontgomeryPoint; use backend::serial::curve_models::AffineNielsPoint; use backend::serial::curve_models::CompletedPoint; use backend::serial::curve_models::ProjectiveNielsPoint; use backend::serial::curve_models::ProjectivePoint; use window::LookupTable; #[allow(unused_imports)] use prelude::*; use traits::ValidityCheck; use traits::{Identity, IsIdentity}; #[cfg(any(feature = "alloc", feature = "std"))] use traits::MultiscalarMul; #[cfg(any(feature = "alloc", feature = "std"))] use traits::{VartimeMultiscalarMul, VartimePrecomputedMultiscalarMul}; #[cfg(not(all( feature = "simd_backend", any(target_feature = "avx2", target_feature = "avx512ifma") )))] use backend::serial::scalar_mul; #[cfg(all( feature = "simd_backend", any(target_feature = "avx2", target_feature = "avx512ifma") ))] use backend::vector::scalar_mul; // ------------------------------------------------------------------------ // Compressed points // ------------------------------------------------------------------------ /// In "Edwards y" / "Ed25519" format, the curve point \\((x,y)\\) is /// determined by the \\(y\\)-coordinate and the sign of \\(x\\). /// /// The first 255 bits of a `CompressedEdwardsY` represent the /// \\(y\\)-coordinate. The high bit of the 32nd byte gives the sign of \\(x\\). #[derive(Copy, Clone, Eq, PartialEq, Hash)] pub struct CompressedEdwardsY(pub [u8; 32]); impl ConstantTimeEq for CompressedEdwardsY { fn ct_eq(&self, other: &CompressedEdwardsY) -> Choice { self.as_bytes().ct_eq(other.as_bytes()) } } impl Debug for CompressedEdwardsY { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { write!(f, "CompressedEdwardsY: {:?}", self.as_bytes()) } } impl CompressedEdwardsY { /// View this `CompressedEdwardsY` as an array of bytes. pub fn as_bytes(&self) -> &[u8; 32] { &self.0 } /// Copy this `CompressedEdwardsY` to an array of bytes. pub fn to_bytes(&self) -> [u8; 32] { self.0 } /// Attempt to decompress to an `EdwardsPoint`. /// /// Returns `None` if the input is not the \\(y\\)-coordinate of a /// curve point. pub fn decompress(&self) -> Option<EdwardsPoint> { let Y = FieldElement::from_bytes(self.as_bytes()); let Z = FieldElement::one(); let YY = Y.square(); let u = &YY - &Z; // u = y²-1 let v = &(&YY * &constants::EDWARDS_D) + &Z; // v = dy²+1 let (is_valid_y_coord, mut X) = FieldElement::sqrt_ratio_i(&u, &v); if is_valid_y_coord.unwrap_u8() != 1u8 { return None; } // FieldElement::sqrt_ratio_i always returns the nonnegative square root, // so we negate according to the supplied sign bit. let compressed_sign_bit = Choice::from(self.as_bytes()[31] >> 7); X.conditional_negate(compressed_sign_bit); Some(EdwardsPoint{ X, Y, Z, T: &X * &Y }) } } // ------------------------------------------------------------------------ // Serde support // ------------------------------------------------------------------------ // Serializes to and from `EdwardsPoint` directly, doing compression // and decompression internally. This means that users can create // structs containing `EdwardsPoint`s and use Serde's derived // serializers to serialize those structures. #[cfg(feature = "serde")] use serde::{self, Serialize, Deserialize, Serializer, Deserializer}; #[cfg(feature = "serde")] use serde::de::Visitor; #[cfg(feature = "serde")] impl Serialize for EdwardsPoint { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer { use serde::ser::SerializeTuple; let mut tup = serializer.serialize_tuple(32)?; for byte in self.compress().as_bytes().iter() { tup.serialize_element(byte)?; } tup.end() } } #[cfg(feature = "serde")] impl Serialize for CompressedEdwardsY { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer { use serde::ser::SerializeTuple; let mut tup = serializer.serialize_tuple(32)?; for byte in self.as_bytes().iter() { tup.serialize_element(byte)?; } tup.end() } } #[cfg(feature = "serde")] impl<'de> Deserialize<'de> for EdwardsPoint { fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'de> { struct EdwardsPointVisitor; impl<'de> Visitor<'de> for EdwardsPointVisitor { type Value = EdwardsPoint; fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { formatter.write_str("a valid point in Edwards y + sign format") } fn visit_seq<A>(self, mut seq: A) -> Result<EdwardsPoint, A::Error> where A: serde::de::SeqAccess<'de> { let mut bytes = [0u8; 32]; for i in 0..32 { bytes[i] = seq.next_element()? .ok_or(serde::de::Error::invalid_length(i, &"expected 32 bytes"))?; } CompressedEdwardsY(bytes) .decompress() .ok_or(serde::de::Error::custom("decompression failed")) } } deserializer.deserialize_tuple(32, EdwardsPointVisitor) } } #[cfg(feature = "serde")] impl<'de> Deserialize<'de> for CompressedEdwardsY { fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'de> { struct CompressedEdwardsYVisitor; impl<'de> Visitor<'de> for CompressedEdwardsYVisitor { type Value = CompressedEdwardsY; fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { formatter.write_str("32 bytes of data") } fn visit_seq<A>(self, mut seq: A) -> Result<CompressedEdwardsY, A::Error> where A: serde::de::SeqAccess<'de> { let mut bytes = [0u8; 32]; for i in 0..32 { bytes[i] = seq.next_element()? .ok_or(serde::de::Error::invalid_length(i, &"expected 32 bytes"))?; } Ok(CompressedEdwardsY(bytes)) } } deserializer.deserialize_tuple(32, CompressedEdwardsYVisitor) } } // ------------------------------------------------------------------------ // Internal point representations // ------------------------------------------------------------------------ /// An `EdwardsPoint` represents a point on the Edwards form of Curve25519. #[derive(Copy, Clone)] #[allow(missing_docs)] pub struct EdwardsPoint { pub(crate) X: FieldElement, pub(crate) Y: FieldElement, pub(crate) Z: FieldElement, pub(crate) T: FieldElement, } // ------------------------------------------------------------------------ // Constructors // ------------------------------------------------------------------------ impl Identity for CompressedEdwardsY { fn identity() -> CompressedEdwardsY { CompressedEdwardsY([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) } } impl Default for CompressedEdwardsY { fn default() -> CompressedEdwardsY { CompressedEdwardsY::identity() } } impl CompressedEdwardsY { /// Construct a `CompressedEdwardsY` from a slice of bytes. /// /// # Panics /// /// If the input `bytes` slice does not have a length of 32. pub fn from_slice(bytes: &[u8]) -> CompressedEdwardsY { let mut tmp = [0u8; 32]; tmp.copy_from_slice(bytes); CompressedEdwardsY(tmp) } } impl Identity for EdwardsPoint { fn identity() -> EdwardsPoint { EdwardsPoint { X: FieldElement::zero(), Y: FieldElement::one(), Z: FieldElement::one(), T: FieldElement::zero(), } } } impl Default for EdwardsPoint { fn default() -> EdwardsPoint { EdwardsPoint::identity() } } // ------------------------------------------------------------------------ // Validity checks (for debugging, not CT) // ------------------------------------------------------------------------ impl ValidityCheck for EdwardsPoint { fn is_valid(&self) -> bool { let point_on_curve = self.to_projective().is_valid(); let on_segre_image = (&self.X * &self.Y) == (&self.Z * &self.T); point_on_curve && on_segre_image } } // ------------------------------------------------------------------------ // Constant-time assignment // ------------------------------------------------------------------------ impl ConditionallySelectable for EdwardsPoint { fn conditional_select(a: &EdwardsPoint, b: &EdwardsPoint, choice: Choice) -> EdwardsPoint { EdwardsPoint { X: FieldElement::conditional_select(&a.X, &b.X, choice), Y: FieldElement::conditional_select(&a.Y, &b.Y, choice), Z: FieldElement::conditional_select(&a.Z, &b.Z, choice), T: FieldElement::conditional_select(&a.T, &b.T, choice), } } } // ------------------------------------------------------------------------ // Equality // ------------------------------------------------------------------------ impl ConstantTimeEq for EdwardsPoint { fn ct_eq(&self, other: &EdwardsPoint) -> Choice { // We would like to check that the point (X/Z, Y/Z) is equal to // the point (X'/Z', Y'/Z') without converting into affine // coordinates (x, y) and (x', y'), which requires two inversions. // We have that X = xZ and X' = x'Z'. Thus, x = x' is equivalent to // (xZ)Z' = (x'Z')Z, and similarly for the y-coordinate. (&self.X * &other.Z).ct_eq(&(&other.X * &self.Z)) & (&self.Y * &other.Z).ct_eq(&(&other.Y * &self.Z)) } } impl PartialEq for EdwardsPoint { fn eq(&self, other: &EdwardsPoint) -> bool { self.ct_eq(other).unwrap_u8() == 1u8 } } impl Eq for EdwardsPoint {} // ------------------------------------------------------------------------ // Point conversions // ------------------------------------------------------------------------ impl EdwardsPoint { /// Convert to a ProjectiveNielsPoint pub(crate) fn to_projective_niels(&self) -> ProjectiveNielsPoint { ProjectiveNielsPoint{ Y_plus_X: &self.Y + &self.X, Y_minus_X: &self.Y - &self.X, Z: self.Z, T2d: &self.T * &constants::EDWARDS_D2, } } /// Convert the representation of this point from extended /// coordinates to projective coordinates. /// /// Free. pub(crate) fn to_projective(&self) -> ProjectivePoint { ProjectivePoint{ X: self.X, Y: self.Y, Z: self.Z, } } /// Dehomogenize to a AffineNielsPoint. /// Mainly for testing. pub(crate) fn to_affine_niels(&self) -> AffineNielsPoint { let recip = self.Z.invert(); let x = &self.X * &recip; let y = &self.Y * &recip; let xy2d = &(&x * &y) * &constants::EDWARDS_D2; AffineNielsPoint{ y_plus_x: &y + &x, y_minus_x: &y - &x, xy2d } } /// Convert this `EdwardsPoint` on the Edwards model to the /// corresponding `MontgomeryPoint` on the Montgomery model. /// /// This function has one exceptional case; the identity point of /// the Edwards curve is sent to the 2-torsion point \\((0,0)\\) /// on the Montgomery curve. /// /// Note that this is a one-way conversion, since the Montgomery /// model does not retain sign information. pub fn to_montgomery(&self) -> MontgomeryPoint { // We have u = (1+y)/(1-y) = (Z+Y)/(Z-Y). // // The denominator is zero only when y=1, the identity point of // the Edwards curve. Since 0.invert() = 0, in this case we // compute the 2-torsion point (0,0). let U = &self.Z + &self.Y; let W = &self.Z - &self.Y; let u = &U * &W.invert(); MontgomeryPoint(u.to_bytes()) } /// Compress this point to `CompressedEdwardsY` format. pub fn compress(&self) -> CompressedEdwardsY { let recip = self.Z.invert(); let x = &self.X * &recip; let y = &self.Y * &recip; let mut s: [u8; 32]; s = y.to_bytes(); s[31] ^= x.is_negative().unwrap_u8() << 7; CompressedEdwardsY(s) } } // ------------------------------------------------------------------------ // Doubling // ------------------------------------------------------------------------ impl EdwardsPoint { /// Add this point to itself. pub(crate) fn double(&self) -> EdwardsPoint { self.to_projective().double().to_extended() } } // ------------------------------------------------------------------------ // Addition and Subtraction // ------------------------------------------------------------------------ impl<'a, 'b> Add<&'b EdwardsPoint> for &'a EdwardsPoint { type Output = EdwardsPoint; fn add(self, other: &'b EdwardsPoint) -> EdwardsPoint { (self + &other.to_projective_niels()).to_extended() } } define_add_variants!(LHS = EdwardsPoint, RHS = EdwardsPoint, Output = EdwardsPoint); impl<'b> AddAssign<&'b EdwardsPoint> for EdwardsPoint { fn add_assign(&mut self, _rhs: &'b EdwardsPoint) { *self = (self as &EdwardsPoint) + _rhs; } } define_add_assign_variants!(LHS = EdwardsPoint, RHS = EdwardsPoint); impl<'a, 'b> Sub<&'b EdwardsPoint> for &'a EdwardsPoint { type Output = EdwardsPoint; fn sub(self, other: &'b EdwardsPoint) -> EdwardsPoint { (self - &other.to_projective_niels()).to_extended() } } define_sub_variants!(LHS = EdwardsPoint, RHS = EdwardsPoint, Output = EdwardsPoint); impl<'b> SubAssign<&'b EdwardsPoint> for EdwardsPoint { fn sub_assign(&mut self, _rhs: &'b EdwardsPoint) { *self = (self as &EdwardsPoint) - _rhs; } } define_sub_assign_variants!(LHS = EdwardsPoint, RHS = EdwardsPoint); impl<T> Sum<T> for EdwardsPoint where T: Borrow<EdwardsPoint> { fn sum<I>(iter: I) -> Self where I: Iterator<Item = T> { iter.fold(EdwardsPoint::identity(), |acc, item| acc + item.borrow()) } } // ------------------------------------------------------------------------ // Negation // ------------------------------------------------------------------------ impl<'a> Neg for &'a EdwardsPoint { type Output = EdwardsPoint; fn neg(self) -> EdwardsPoint { EdwardsPoint{ X: -(&self.X), Y: self.Y, Z: self.Z, T: -(&self.T), } } } impl Neg for EdwardsPoint { type Output = EdwardsPoint; fn neg(self) -> EdwardsPoint { -&self } } // ------------------------------------------------------------------------ // Scalar multiplication // ------------------------------------------------------------------------ impl<'b> MulAssign<&'b Scalar> for EdwardsPoint { fn mul_assign(&mut self, scalar: &'b Scalar) { let result = (self as &EdwardsPoint) * scalar; *self = result; } } define_mul_assign_variants!(LHS = EdwardsPoint, RHS = Scalar); define_mul_variants!(LHS = EdwardsPoint, RHS = Scalar, Output = EdwardsPoint); define_mul_variants!(LHS = Scalar, RHS = EdwardsPoint, Output = EdwardsPoint); impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsPoint { type Output = EdwardsPoint; /// Scalar multiplication: compute `scalar * self`. /// /// For scalar multiplication of a basepoint, /// `EdwardsBasepointTable` is approximately 4x faster. fn mul(self, scalar: &'b Scalar) -> EdwardsPoint { scalar_mul::variable_base::mul(self, scalar) } } impl<'a, 'b> Mul<&'b EdwardsPoint> for &'a Scalar { type Output = EdwardsPoint; /// Scalar multiplication: compute `scalar * self`. /// /// For scalar multiplication of a basepoint, /// `EdwardsBasepointTable` is approximately 4x faster. fn mul(self, point: &'b EdwardsPoint) -> EdwardsPoint { point * self } } // ------------------------------------------------------------------------ // Multiscalar Multiplication impls // ------------------------------------------------------------------------ // These use the iterator's size hint and the target settings to // forward to a specific backend implementation. #[cfg(feature = "alloc")] impl MultiscalarMul for EdwardsPoint { type Point = EdwardsPoint; fn multiscalar_mul<I, J>(scalars: I, points: J) -> EdwardsPoint where I: IntoIterator, I::Item: Borrow<Scalar>, J: IntoIterator, J::Item: Borrow<EdwardsPoint>, { // Sanity-check lengths of input iterators let mut scalars = scalars.into_iter(); let mut points = points.into_iter(); // Lower and upper bounds on iterators let (s_lo, s_hi) = scalars.by_ref().size_hint(); let (p_lo, p_hi) = points.by_ref().size_hint(); // They should all be equal assert_eq!(s_lo, p_lo); assert_eq!(s_hi, Some(s_lo)); assert_eq!(p_hi, Some(p_lo)); // Now we know there's a single size. When we do // size-dependent algorithm dispatch, use this as the hint. let _size = s_lo; scalar_mul::straus::Straus::multiscalar_mul(scalars, points) } } #[cfg(feature = "alloc")] impl VartimeMultiscalarMul for EdwardsPoint { type Point = EdwardsPoint; fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<EdwardsPoint> where I: IntoIterator, I::Item: Borrow<Scalar>, J: IntoIterator<Item = Option<EdwardsPoint>>, { // Sanity-check lengths of input iterators let mut scalars = scalars.into_iter(); let mut points = points.into_iter(); // Lower and upper bounds on iterators let (s_lo, s_hi) = scalars.by_ref().size_hint(); let (p_lo, p_hi) = points.by_ref().size_hint(); // They should all be equal assert_eq!(s_lo, p_lo); assert_eq!(s_hi, Some(s_lo)); assert_eq!(p_hi, Some(p_lo)); // Now we know there's a single size. // Use this as the hint to decide which algorithm to use. let size = s_lo; if size < 190 { scalar_mul::straus::Straus::optional_multiscalar_mul(scalars, points) } else { scalar_mul::pippenger::Pippenger::optional_multiscalar_mul(scalars, points) } } } /// Precomputation for variable-time multiscalar multiplication with `EdwardsPoint`s. // This wraps the inner implementation in a facade type so that we can // decouple stability of the inner type from the stability of the // outer type. #[cfg(feature = "alloc")] pub struct VartimeEdwardsPrecomputation(scalar_mul::precomputed_straus::VartimePrecomputedStraus); #[cfg(feature = "alloc")] impl VartimePrecomputedMultiscalarMul for VartimeEdwardsPrecomputation { type Point = EdwardsPoint; fn new<I>(static_points: I) -> Self where I: IntoIterator, I::Item: Borrow<Self::Point>, { Self(scalar_mul::precomputed_straus::VartimePrecomputedStraus::new(static_points)) } fn optional_mixed_multiscalar_mul<I, J, K>( &self, static_scalars: I, dynamic_scalars: J, dynamic_points: K, ) -> Option<Self::Point> where I: IntoIterator, I::Item: Borrow<Scalar>, J: IntoIterator, J::Item: Borrow<Scalar>, K: IntoIterator<Item = Option<Self::Point>>, { self.0 .optional_mixed_multiscalar_mul(static_scalars, dynamic_scalars, dynamic_points) } } impl EdwardsPoint { /// Compute \\(aA + bB\\) in variable time, where \\(B\\) is the Ed25519 basepoint. pub fn vartime_double_scalar_mul_basepoint( a: &Scalar, A: &EdwardsPoint, b: &Scalar, ) -> EdwardsPoint { scalar_mul::vartime_double_base::mul(a, A, b) } } /// A precomputed table of multiples of a basepoint, for accelerating /// fixed-base scalar multiplication. One table, for the Ed25519 /// basepoint, is provided in the `constants` module. /// /// The basepoint tables are reasonably large (30KB), so they should /// probably be boxed. #[derive(Clone)] pub struct EdwardsBasepointTable(pub(crate) [LookupTable<AffineNielsPoint>; 32]); impl EdwardsBasepointTable { /// The computation uses Pippenger's algorithm, as described on /// page 13 of the Ed25519 paper. Write the scalar \\(a\\) in radix \\(16\\) with /// coefficients in \\([-8,8)\\), i.e., /// $$ /// a = a\_0 + a\_1 16\^1 + \cdots + a\_{63} 16\^{63}, /// $$ /// with \\(-8 \leq a_i < 8\\), \\(-8 \leq a\_{63} \leq 8\\). Then /// $$ /// a B = a\_0 B + a\_1 16\^1 B + \cdots + a\_{63} 16\^{63} B. /// $$ /// Grouping even and odd coefficients gives /// $$ /// \begin{aligned} /// a B = \quad a\_0 16\^0 B +& a\_2 16\^2 B + \cdots + a\_{62} 16\^{62} B \\\\ /// + a\_1 16\^1 B +& a\_3 16\^3 B + \cdots + a\_{63} 16\^{63} B \\\\ /// = \quad(a\_0 16\^0 B +& a\_2 16\^2 B + \cdots + a\_{62} 16\^{62} B) \\\\ /// + 16(a\_1 16\^0 B +& a\_3 16\^2 B + \cdots + a\_{63} 16\^{62} B). \\\\ /// \end{aligned} /// $$ /// For each \\(i = 0 \ldots 31\\), we create a lookup table of /// $$ /// [16\^{2i} B, \ldots, 8\cdot16\^{2i} B], /// $$ /// and use it to select \\( x \cdot 16\^{2i} \cdot B \\) in constant time. /// /// The radix-\\(16\\) representation requires that the scalar is bounded /// by \\(2\^{255}\\), which is always the case. fn basepoint_mul(&self, scalar: &Scalar) -> EdwardsPoint { let a = scalar.to_radix_16(); let tables = &self.0; let mut P = EdwardsPoint::identity(); for i in (0..64).filter(|x| x % 2 == 1) { P = (&P + &tables[i/2].select(a[i])).to_extended(); } P = P.mul_by_pow_2(4); for i in (0..64).filter(|x| x % 2 == 0) { P = (&P + &tables[i/2].select(a[i])).to_extended(); } P } } impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTable { type Output = EdwardsPoint; /// Construct an `EdwardsPoint` from a `Scalar` \\(a\\) by /// computing the multiple \\(aB\\) of this basepoint \\(B\\). fn mul(self, scalar: &'b Scalar) -> EdwardsPoint { // delegate to a private function so that its documentation appears in internal docs self.basepoint_mul(scalar) } } impl<'a, 'b> Mul<&'a EdwardsBasepointTable> for &'b Scalar { type Output = EdwardsPoint; /// Construct an `EdwardsPoint` from a `Scalar` \\(a\\) by /// computing the multiple \\(aB\\) of this basepoint \\(B\\). fn mul(self, basepoint_table: &'a EdwardsBasepointTable) -> EdwardsPoint { basepoint_table * self } } impl EdwardsBasepointTable { /// Create a table of precomputed multiples of `basepoint`. pub fn create(basepoint: &EdwardsPoint) -> EdwardsBasepointTable { // XXX use init_with let mut table = EdwardsBasepointTable([LookupTable::default(); 32]); let mut P = *basepoint; for i in 0..32 { // P = (16^2)^i * B table.0[i] = LookupTable::from(&P); P = P.mul_by_pow_2(8); } table } /// Get the basepoint for this table as an `EdwardsPoint`. pub fn basepoint(&self) -> EdwardsPoint { // self.0[0].select(1) = 1*(16^2)^0*B // but as an `AffineNielsPoint`, so add identity to convert to extended. (&EdwardsPoint::identity() + &self.0[0].select(1)).to_extended() } } impl EdwardsPoint { /// Multiply by the cofactor: return \\([8]P\\). pub fn mul_by_cofactor(&self) -> EdwardsPoint { self.mul_by_pow_2(3) } /// Compute \\([2\^k] P \\) by successive doublings. Requires \\( k > 0 \\). pub(crate) fn mul_by_pow_2(&self, k: u32) -> EdwardsPoint { debug_assert!( k > 0 ); let mut r: CompletedPoint; let mut s = self.to_projective(); for _ in 0..(k-1) { r = s.double(); s = r.to_projective(); } // Unroll last iteration so we can go directly to_extended() s.double().to_extended() } /// Determine if this point is of small order. /// /// # Return /// /// * `true` if `self` is in the torsion subgroup \\( \mathcal E[8] \\); /// * `false` if `self` is not in the torsion subgroup \\( \mathcal E[8] \\). /// /// # Example /// /// ``` /// use curve25519_dalek_fiat::constants; /// /// // Generator of the prime-order subgroup /// let P = constants::ED25519_BASEPOINT_POINT; /// // Generator of the torsion subgroup /// let Q = constants::EIGHT_TORSION[1]; /// /// // P has large order /// assert_eq!(P.is_small_order(), false); /// /// // Q has small order /// assert_eq!(Q.is_small_order(), true); /// ``` pub fn is_small_order(&self) -> bool { self.mul_by_cofactor().is_identity() } /// Determine if this point is “torsion-free”, i.e., is contained in /// the prime-order subgroup. /// /// # Return /// /// * `true` if `self` has zero torsion component and is in the /// prime-order subgroup; /// * `false` if `self` has a nonzero torsion component and is not /// in the prime-order subgroup. /// /// # Example /// /// ``` /// use curve25519_dalek_fiat::constants; /// /// // Generator of the prime-order subgroup /// let P = constants::ED25519_BASEPOINT_POINT; /// // Generator of the torsion subgroup /// let Q = constants::EIGHT_TORSION[1]; /// /// // P is torsion-free /// assert_eq!(P.is_torsion_free(), true); /// /// // P + Q is not torsion-free /// assert_eq!((P+Q).is_torsion_free(), false); /// ``` pub fn is_torsion_free(&self) -> bool { (self * constants::BASEPOINT_ORDER).is_identity() } } // ------------------------------------------------------------------------ // Debug traits // ------------------------------------------------------------------------ impl Debug for EdwardsPoint { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { write!(f, "EdwardsPoint{{\n\tX: {:?},\n\tY: {:?},\n\tZ: {:?},\n\tT: {:?}\n}}", &self.X, &self.Y, &self.Z, &self.T) } } impl Debug for EdwardsBasepointTable { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { write!(f, "EdwardsBasepointTable([\n")?; for i in 0..32 { write!(f, "\t{:?},\n", &self.0[i])?; } write!(f, "])") } } // ------------------------------------------------------------------------ // Tests // ------------------------------------------------------------------------ #[cfg(test)] mod test { use field::FieldElement; use scalar::Scalar; use subtle::ConditionallySelectable; use constants; use super::*; /// X coordinate of the basepoint. /// = 15112221349535400772501151409588531511454012693041857206046113283949847762202 static BASE_X_COORD_BYTES: [u8; 32] = [0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9, 0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69, 0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0, 0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21]; /// Compressed Edwards Y form of 2*basepoint. static BASE2_CMPRSSD: CompressedEdwardsY = CompressedEdwardsY([0xc9, 0xa3, 0xf8, 0x6a, 0xae, 0x46, 0x5f, 0xe, 0x56, 0x51, 0x38, 0x64, 0x51, 0x0f, 0x39, 0x97, 0x56, 0x1f, 0xa2, 0xc9, 0xe8, 0x5e, 0xa2, 0x1d, 0xc2, 0x29, 0x23, 0x09, 0xf3, 0xcd, 0x60, 0x22]); /// Compressed Edwards Y form of 16*basepoint. static BASE16_CMPRSSD: CompressedEdwardsY = CompressedEdwardsY([0xeb, 0x27, 0x67, 0xc1, 0x37, 0xab, 0x7a, 0xd8, 0x27, 0x9c, 0x07, 0x8e, 0xff, 0x11, 0x6a, 0xb0, 0x78, 0x6e, 0xad, 0x3a, 0x2e, 0x0f, 0x98, 0x9f, 0x72, 0xc3, 0x7f, 0x82, 0xf2, 0x96, 0x96, 0x70]); /// 4493907448824000747700850167940867464579944529806937181821189941592931634714 pub static A_SCALAR: Scalar = Scalar{ bytes: [ 0x1a, 0x0e, 0x97, 0x8a, 0x90, 0xf6, 0x62, 0x2d, 0x37, 0x47, 0x02, 0x3f, 0x8a, 0xd8, 0x26, 0x4d, 0xa7, 0x58, 0xaa, 0x1b, 0x88, 0xe0, 0x40, 0xd1, 0x58, 0x9e, 0x7b, 0x7f, 0x23, 0x76, 0xef, 0x09, ], }; /// 2506056684125797857694181776241676200180934651973138769173342316833279714961 pub static B_SCALAR: Scalar = Scalar{ bytes: [ 0x91, 0x26, 0x7a, 0xcf, 0x25, 0xc2, 0x09, 0x1b, 0xa2, 0x17, 0x74, 0x7b, 0x66, 0xf0, 0xb3, 0x2e, 0x9d, 0xf2, 0xa5, 0x67, 0x41, 0xcf, 0xda, 0xc4, 0x56, 0xa7, 0xd4, 0xaa, 0xb8, 0x60, 0x8a, 0x05, ], }; /// A_SCALAR * basepoint, computed with ed25519.py pub static A_TIMES_BASEPOINT: CompressedEdwardsY = CompressedEdwardsY([ 0xea, 0x27, 0xe2, 0x60, 0x53, 0xdf, 0x1b, 0x59, 0x56, 0xf1, 0x4d, 0x5d, 0xec, 0x3c, 0x34, 0xc3, 0x84, 0xa2, 0x69, 0xb7, 0x4c, 0xc3, 0x80, 0x3e, 0xa8, 0xe2, 0xe7, 0xc9, 0x42, 0x5e, 0x40, 0xa5]); /// A_SCALAR * (A_TIMES_BASEPOINT) + B_SCALAR * BASEPOINT /// computed with ed25519.py static DOUBLE_SCALAR_MULT_RESULT: CompressedEdwardsY = CompressedEdwardsY([ 0x7d, 0xfd, 0x6c, 0x45, 0xaf, 0x6d, 0x6e, 0x0e, 0xba, 0x20, 0x37, 0x1a, 0x23, 0x64, 0x59, 0xc4, 0xc0, 0x46, 0x83, 0x43, 0xde, 0x70, 0x4b, 0x85, 0x09, 0x6f, 0xfe, 0x35, 0x4f, 0x13, 0x2b, 0x42]); /// Test round-trip decompression for the basepoint. #[test] fn basepoint_decompression_compression() { let base_X = FieldElement::from_bytes(&BASE_X_COORD_BYTES); let bp = constants::ED25519_BASEPOINT_COMPRESSED.decompress().unwrap(); assert!(bp.is_valid()); // Check that decompression actually gives the correct X coordinate assert_eq!(base_X, bp.X); assert_eq!(bp.compress(), constants::ED25519_BASEPOINT_COMPRESSED); } /// Test sign handling in decompression #[test] fn decompression_sign_handling() { // Manually set the high bit of the last byte to flip the sign let mut minus_basepoint_bytes = constants::ED25519_BASEPOINT_COMPRESSED.as_bytes().clone(); minus_basepoint_bytes[31] |= 1 << 7; let minus_basepoint = CompressedEdwardsY(minus_basepoint_bytes) .decompress().unwrap(); // Test projective coordinates exactly since we know they should // only differ by a flipped sign. assert_eq!(minus_basepoint.X, -(&constants::ED25519_BASEPOINT_POINT.X)); assert_eq!(minus_basepoint.Y, constants::ED25519_BASEPOINT_POINT.Y); assert_eq!(minus_basepoint.Z, constants::ED25519_BASEPOINT_POINT.Z); assert_eq!(minus_basepoint.T, -(&constants::ED25519_BASEPOINT_POINT.T)); } /// Test that computing 1*basepoint gives the correct basepoint. #[test] fn basepoint_mult_one_vs_basepoint() { let bp = &constants::ED25519_BASEPOINT_TABLE * &Scalar::one(); let compressed = bp.compress(); assert_eq!(compressed, constants::ED25519_BASEPOINT_COMPRESSED); } /// Test that `EdwardsBasepointTable::basepoint()` gives the correct basepoint. #[test] fn basepoint_table_basepoint_function_correct() { let bp = constants::ED25519_BASEPOINT_TABLE.basepoint(); assert_eq!(bp.compress(), constants::ED25519_BASEPOINT_COMPRESSED); } /// Test `impl Add<EdwardsPoint> for EdwardsPoint` /// using basepoint + basepoint versus the 2*basepoint constant. #[test] fn basepoint_plus_basepoint_vs_basepoint2() { let bp = constants::ED25519_BASEPOINT_POINT; let bp_added = &bp + &bp; assert_eq!(bp_added.compress(), BASE2_CMPRSSD); } /// Test `impl Add<ProjectiveNielsPoint> for EdwardsPoint` /// using the basepoint, basepoint2 constants #[test] fn basepoint_plus_basepoint_projective_niels_vs_basepoint2() { let bp = constants::ED25519_BASEPOINT_POINT; let bp_added = (&bp + &bp.to_projective_niels()).to_extended(); assert_eq!(bp_added.compress(), BASE2_CMPRSSD); } /// Test `impl Add<AffineNielsPoint> for EdwardsPoint` /// using the basepoint, basepoint2 constants #[test] fn basepoint_plus_basepoint_affine_niels_vs_basepoint2() { let bp = constants::ED25519_BASEPOINT_POINT; let bp_affine_niels = bp.to_affine_niels(); let bp_added = (&bp + &bp_affine_niels).to_extended(); assert_eq!(bp_added.compress(), BASE2_CMPRSSD); } /// Check that equality of `EdwardsPoints` handles projective /// coordinates correctly. #[test] fn extended_point_equality_handles_scaling() { let mut two_bytes = [0u8; 32]; two_bytes[0] = 2; let id1 = EdwardsPoint::identity(); let id2 = EdwardsPoint{ X: FieldElement::zero(), Y: FieldElement::from_bytes(&two_bytes), Z: FieldElement::from_bytes(&two_bytes), T: FieldElement::zero() }; assert_eq!(id1.ct_eq(&id2).unwrap_u8(), 1u8); } /// Sanity check for conversion to precomputed points #[test] fn to_affine_niels_clears_denominators() { // construct a point as aB so it has denominators (ie. Z != 1) let aB = &constants::ED25519_BASEPOINT_TABLE * &A_SCALAR; let aB_affine_niels = aB.to_affine_niels(); let also_aB = (&EdwardsPoint::identity() + &aB_affine_niels).to_extended(); assert_eq!( aB.compress(), also_aB.compress()); } /// Test basepoint_mult versus a known scalar multiple from ed25519.py #[test] fn basepoint_mult_vs_ed25519py() { let aB = &constants::ED25519_BASEPOINT_TABLE * &A_SCALAR; assert_eq!(aB.compress(), A_TIMES_BASEPOINT); } /// Test that multiplication by the basepoint order kills the basepoint #[test] fn basepoint_mult_by_basepoint_order() { let B = &constants::ED25519_BASEPOINT_TABLE; let should_be_id = B * &constants::BASEPOINT_ORDER; assert!(should_be_id.is_identity()); } /// Test precomputed basepoint mult #[test] fn test_precomputed_basepoint_mult() { let aB_1 = &constants::ED25519_BASEPOINT_TABLE * &A_SCALAR; let aB_2 = &constants::ED25519_BASEPOINT_POINT * &A_SCALAR; assert_eq!(aB_1.compress(), aB_2.compress()); } /// Test scalar_mul versus a known scalar multiple from ed25519.py #[test] fn scalar_mul_vs_ed25519py() { let aB = &constants::ED25519_BASEPOINT_POINT * &A_SCALAR; assert_eq!(aB.compress(), A_TIMES_BASEPOINT); } /// Test basepoint.double() versus the 2*basepoint constant. #[test] fn basepoint_double_vs_basepoint2() { assert_eq!(constants::ED25519_BASEPOINT_POINT.double().compress(), BASE2_CMPRSSD); } /// Test that computing 2*basepoint is the same as basepoint.double() #[test] fn basepoint_mult_two_vs_basepoint2() { let two = Scalar::from(2u64); let bp2 = &constants::ED25519_BASEPOINT_TABLE * &two; assert_eq!(bp2.compress(), BASE2_CMPRSSD); } /// Check that converting to projective and then back to extended round-trips. #[test] fn basepoint_projective_extended_round_trip() { assert_eq!(constants::ED25519_BASEPOINT_POINT .to_projective().to_extended().compress(), constants::ED25519_BASEPOINT_COMPRESSED); } /// Test computing 16*basepoint vs mul_by_pow_2(4) #[test] fn basepoint16_vs_mul_by_pow_2_4() { let bp16 = constants::ED25519_BASEPOINT_POINT.mul_by_pow_2(4); assert_eq!(bp16.compress(), BASE16_CMPRSSD); } #[test] fn impl_sum() { // Test that sum works for non-empty iterators let BASE = constants::ED25519_BASEPOINT_POINT; let s1 = Scalar::from(999u64); let P1 = &BASE * &s1; let s2 = Scalar::from(333u64); let P2 = &BASE * &s2; let vec = vec![P1.clone(), P2.clone()]; let sum: EdwardsPoint = vec.iter().sum(); assert_eq!(sum, P1 + P2); // Test that sum works for the empty iterator let empty_vector: Vec<EdwardsPoint> = vec![]; let sum: EdwardsPoint = empty_vector.iter().sum(); assert_eq!(sum, EdwardsPoint::identity()); // Test that sum works on owning iterators let s = Scalar::from(2u64); let mapped = vec.iter().map(|x| x * s); let sum: EdwardsPoint = mapped.sum(); assert_eq!(sum, &P1 * &s + &P2 * &s); } /// Test that the conditional assignment trait works for AffineNielsPoints. #[test] fn conditional_assign_for_affine_niels_point() { let id = AffineNielsPoint::identity(); let mut p1 = AffineNielsPoint::identity(); let bp = constants::ED25519_BASEPOINT_POINT.to_affine_niels(); p1.conditional_assign(&bp, Choice::from(0)); assert_eq!(p1, id); p1.conditional_assign(&bp, Choice::from(1)); assert_eq!(p1, bp); } #[test] fn is_small_order() { // The basepoint has large prime order assert!(!constants::ED25519_BASEPOINT_POINT.is_small_order()); // constants::EIGHT_TORSION has all points of small order. for torsion_point in &constants::EIGHT_TORSION { assert!(torsion_point.is_small_order()); } } #[test] fn compressed_identity() { assert_eq!(EdwardsPoint::identity().compress(), CompressedEdwardsY::identity()); } #[test] fn is_identity() { assert!( EdwardsPoint::identity().is_identity()); assert!(!constants::ED25519_BASEPOINT_POINT.is_identity()); } /// Rust's debug builds have overflow and underflow trapping, /// and enable `debug_assert!()`. This performs many scalar /// multiplications to attempt to trigger possible overflows etc. /// /// For instance, the `u64` `Mul` implementation for /// `FieldElements` requires the input `Limb`s to be bounded by /// 2^54, but we cannot enforce this dynamically at runtime, or /// statically at compile time (until Rust gets type-level /// integers, at which point we can encode "bits of headroom" into /// the type system and prove correctness). #[test] fn monte_carlo_overflow_underflow_debug_assert_test() { let mut P = constants::ED25519_BASEPOINT_POINT; // N.B. each scalar_mul does 1407 field mults, 1024 field squarings, // so this does ~ 1M of each operation. for _ in 0..1_000 { P *= &A_SCALAR; } } #[test] fn scalarmult_extended_point_works_both_ways() { let G: EdwardsPoint = constants::ED25519_BASEPOINT_POINT; let s: Scalar = A_SCALAR; let P1 = &G * &s; let P2 = &s * &G; assert!(P1.compress().to_bytes() == P2.compress().to_bytes()); } // A single iteration of a consistency check for MSM. fn multiscalar_consistency_iter(n: usize) { use core::iter; let mut rng = rand::thread_rng(); // Construct random coefficients x0, ..., x_{n-1}, // followed by some extra hardcoded ones. let xs = (0..n) .map(|_| Scalar::random(&mut rng)) // The largest scalar allowed by the type system, 2^255-1 .chain(iter::once(Scalar::from_bits([0xff; 32]))) .collect::<Vec<_>>(); let check = xs.iter() .map(|xi| xi * xi) .sum::<Scalar>(); // Construct points G_i = x_i * B let Gs = xs.iter() .map(|xi| xi * &constants::ED25519_BASEPOINT_TABLE) .collect::<Vec<_>>(); // Compute H1 = <xs, Gs> (consttime) let H1 = EdwardsPoint::multiscalar_mul(&xs, &Gs); // Compute H2 = <xs, Gs> (vartime) let H2 = EdwardsPoint::vartime_multiscalar_mul(&xs, &Gs); // Compute H3 = <xs, Gs> = sum(xi^2) * B let H3 = &check * &constants::ED25519_BASEPOINT_TABLE; assert_eq!(H1, H3); assert_eq!(H2, H3); } // Use different multiscalar sizes to hit different internal // parameters. #[test] fn multiscalar_consistency_n_100() { let iters = 50; for _ in 0..iters { multiscalar_consistency_iter(100); } } #[test] fn multiscalar_consistency_n_250() { let iters = 50; for _ in 0..iters { multiscalar_consistency_iter(250); } } #[test] fn multiscalar_consistency_n_500() { let iters = 50; for _ in 0..iters { multiscalar_consistency_iter(500); } } #[test] fn multiscalar_consistency_n_1000() { let iters = 50; for _ in 0..iters { multiscalar_consistency_iter(1000); } } #[test] fn vartime_precomputed_vs_nonprecomputed_multiscalar() { let mut rng = rand::thread_rng(); let B = &::constants::ED25519_BASEPOINT_TABLE; let static_scalars = (0..128) .map(|_| Scalar::random(&mut rng)) .collect::<Vec<_>>(); let dynamic_scalars = (0..128) .map(|_| Scalar::random(&mut rng)) .collect::<Vec<_>>(); let check_scalar: Scalar = static_scalars .iter() .chain(dynamic_scalars.iter()) .map(|s| s * s) .sum(); let static_points = static_scalars.iter().map(|s| s * B).collect::<Vec<_>>(); let dynamic_points = dynamic_scalars.iter().map(|s| s * B).collect::<Vec<_>>(); let precomputation = VartimeEdwardsPrecomputation::new(static_points.iter()); let P = precomputation.vartime_mixed_multiscalar_mul( &static_scalars, &dynamic_scalars, &dynamic_points, ); use traits::VartimeMultiscalarMul; let Q = EdwardsPoint::vartime_multiscalar_mul( static_scalars.iter().chain(dynamic_scalars.iter()), static_points.iter().chain(dynamic_points.iter()), ); let R = &check_scalar * B; assert_eq!(P.compress(), R.compress()); assert_eq!(Q.compress(), R.compress()); } mod vartime { use super::super::*; use super::{A_SCALAR, B_SCALAR, A_TIMES_BASEPOINT, DOUBLE_SCALAR_MULT_RESULT}; /// Test double_scalar_mul_vartime vs ed25519.py #[test] fn double_scalar_mul_basepoint_vs_ed25519py() { let A = A_TIMES_BASEPOINT.decompress().unwrap(); let result = EdwardsPoint::vartime_double_scalar_mul_basepoint(&A_SCALAR, &A, &B_SCALAR); assert_eq!(result.compress(), DOUBLE_SCALAR_MULT_RESULT); } #[test] fn multiscalar_mul_vs_ed25519py() { let A = A_TIMES_BASEPOINT.decompress().unwrap(); let result = EdwardsPoint::vartime_multiscalar_mul( &[A_SCALAR, B_SCALAR], &[A, constants::ED25519_BASEPOINT_POINT] ); assert_eq!(result.compress(), DOUBLE_SCALAR_MULT_RESULT); } #[test] fn multiscalar_mul_vartime_vs_consttime() { let A = A_TIMES_BASEPOINT.decompress().unwrap(); let result_vartime = EdwardsPoint::vartime_multiscalar_mul( &[A_SCALAR, B_SCALAR], &[A, constants::ED25519_BASEPOINT_POINT] ); let result_consttime = EdwardsPoint::multiscalar_mul( &[A_SCALAR, B_SCALAR], &[A, constants::ED25519_BASEPOINT_POINT] ); assert_eq!(result_vartime.compress(), result_consttime.compress()); } } #[test] #[cfg(feature = "serde")] fn serde_bincode_basepoint_roundtrip() { use bincode; let encoded = bincode::serialize(&constants::ED25519_BASEPOINT_POINT).unwrap(); let enc_compressed = bincode::serialize(&constants::ED25519_BASEPOINT_COMPRESSED).unwrap(); assert_eq!(encoded, enc_compressed); // Check that the encoding is 32 bytes exactly assert_eq!(encoded.len(), 32); let dec_uncompressed: EdwardsPoint = bincode::deserialize(&encoded).unwrap(); let dec_compressed: CompressedEdwardsY = bincode::deserialize(&encoded).unwrap(); assert_eq!(dec_uncompressed, constants::ED25519_BASEPOINT_POINT); assert_eq!(dec_compressed, constants::ED25519_BASEPOINT_COMPRESSED); // Check that the encoding itself matches the usual one let raw_bytes = constants::ED25519_BASEPOINT_COMPRESSED.as_bytes(); let bp: EdwardsPoint = bincode::deserialize(raw_bytes).unwrap(); assert_eq!(bp, constants::ED25519_BASEPOINT_POINT); } }