bench/DepthwiseBenchmark.cc (305 lines of code) (raw):

/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ #include <algorithm> #include <chrono> #include <cmath> #include <cstdio> #include <iostream> #include <vector> #ifdef _OPENMP #include <omp.h> #endif #include "./AlignedVec.h" #include "./BenchUtils.h" #include "fbgemm/FbgemmI8DepthwiseAvx2.h" #include "fbgemm/Utils.h" #include "src/RefImplementations.h" using namespace std; using namespace fbgemm; int main() { #ifdef _OPENMP // Use 1 thread unless OMP_NUM_THREADS is explicit set. const char* val = getenv("OMP_NUM_THREADS"); if (val == nullptr || !*val) { omp_set_num_threads(1); } #endif // From Xray OCR // clang-format off vector<vector<int>> shapes = { // NOTE: clang-format wants to use a different formatting but the current // formatting should be easier to read. // N, G, K_per_G, H_in, W_in, stride, kernel { 1, 272, 1, 47, 125, 1, 3, }, { 1, 272, 1, 47, 125, 1, 5, }, { 1, 272, 1, 64, 125, 1, 3, }, { 1, 272, 1, 66, 125, 1, 3, }, { 1, 272, 1, 67, 100, 1, 3, }, { 1, 272, 1, 71, 125, 1, 3, }, { 1, 272, 1, 74, 125, 1, 3, }, { 1, 272, 1, 75, 75, 1, 3, }, { 1, 272, 1, 75, 76, 1, 3, }, { 1, 272, 1, 75, 79, 1, 3, }, { 1, 272, 1, 75, 85, 1, 3, }, { 1, 272, 1, 75, 100, 1, 3, }, { 1, 272, 1, 75, 103, 1, 3, }, { 1, 272, 1, 75, 111, 1, 3, }, { 1, 272, 1, 75, 113, 1, 3, }, { 1, 272, 1, 94, 75, 1, 3, }, { 1, 272, 1, 109, 75, 1, 3, }, { 1, 272, 1, 113, 75, 1, 3, }, { 1, 272, 1, 117, 75, 1, 3, }, { 1, 544, 1, 24, 63, 1, 3, }, { 1, 544, 1, 32, 63, 1, 3, }, { 1, 544, 1, 33, 63, 1, 3, }, { 1, 544, 1, 34, 50, 1, 3, }, { 1, 544, 1, 36, 63, 1, 3, }, { 1, 544, 1, 37, 63, 1, 3, }, { 1, 544, 1, 38, 38, 1, 3, }, { 1, 544, 1, 38, 40, 1, 3, }, { 1, 544, 1, 38, 43, 1, 3, }, { 1, 544, 1, 38, 50, 1, 3, }, { 1, 544, 1, 38, 52, 1, 3, }, { 1, 544, 1, 38, 56, 1, 3, }, { 1, 544, 1, 38, 57, 1, 3, }, { 1, 544, 1, 47, 38, 1, 3, }, { 1, 544, 1, 55, 38, 1, 3, }, { 1, 544, 1, 57, 38, 1, 3, }, { 1, 544, 1, 59, 38, 1, 3, }, { 1, 1088, 1, 7, 7, 1, 3, }, { 51, 1088, 1, 7, 7, 1, 3, }, { 59, 1088, 1, 7, 7, 1, 3, }, { 70, 1088, 1, 7, 7, 1, 3, }, { 71, 1088, 1, 7, 7, 1, 3, }, { 77, 1088, 1, 7, 7, 1, 3, }, { 79, 1088, 1, 7, 7, 1, 3, }, { 84, 1088, 1, 7, 7, 1, 3, }, { 85, 1088, 1, 7, 7, 1, 3, }, { 89, 1088, 1, 7, 7, 1, 3, }, { 93, 1088, 1, 7, 7, 1, 3, }, { 96, 1088, 1, 7, 7, 1, 3, }, { 100, 1088, 1, 7, 7, 1, 3, }, { 1, 248, 1, 93, 250, 2, 3, }, { 1, 248, 1, 128, 250, 2, 3, }, { 1, 248, 1, 132, 250, 2, 3, }, { 1, 248, 1, 131, 250, 2, 3, }, { 1, 248, 1, 133, 200, 2, 3, }, { 1, 248, 1, 141, 250, 2, 3, }, { 1, 248, 1, 148, 250, 2, 3, }, { 1, 248, 1, 150, 150, 2, 3, }, { 1, 248, 1, 150, 151, 2, 3, }, { 1, 248, 1, 150, 158, 2, 3, }, { 1, 248, 1, 150, 169, 2, 3, }, { 1, 248, 1, 150, 200, 2, 3, }, { 1, 248, 1, 150, 205, 2, 3, }, { 1, 248, 1, 150, 221, 2, 3, }, { 1, 248, 1, 150, 225, 2, 3, }, { 1, 248, 1, 188, 150, 2, 3, }, { 1, 248, 1, 218, 150, 2, 3, }, { 1, 248, 1, 225, 150, 2, 3, }, { 1, 248, 1, 234, 150, 2, 3, }, { 1, 272, 1, 47, 125, 2, 3, }, { 1, 272, 1, 64, 125, 2, 3, }, { 1, 272, 1, 66, 125, 2, 3, }, { 1, 272, 1, 67, 100, 2, 3, }, { 1, 272, 1, 71, 125, 2, 3, }, { 1, 272, 1, 74, 125, 2, 3, }, { 1, 272, 1, 75, 75, 2, 3, }, { 1, 272, 1, 75, 76, 2, 3, }, { 1, 272, 1, 75, 79, 2, 3, }, { 1, 272, 1, 75, 85, 2, 3, }, { 1, 272, 1, 75, 100, 2, 3, }, { 1, 272, 1, 75, 103, 2, 3, }, { 1, 272, 1, 75, 111, 2, 3, }, { 1, 272, 1, 75, 113, 2, 3, }, { 1, 272, 1, 94, 75, 2, 3, }, { 1, 272, 1, 109, 75, 2, 3, }, { 1, 272, 1, 113, 75, 2, 3, }, { 1, 272, 1, 117, 75, 2, 3, }, { 1, 544, 1, 14, 14, 2, 3, }, { 51, 544, 1, 14, 14, 2, 3, }, { 59, 544, 1, 14, 14, 2, 3, }, { 70, 544, 1, 14, 14, 2, 3, }, { 71, 544, 1, 14, 14, 2, 3, }, { 77, 544, 1, 14, 14, 2, 3, }, { 79, 544, 1, 14, 14, 2, 3, }, { 84, 544, 1, 14, 14, 2, 3, }, { 85, 544, 1, 14, 14, 2, 3, }, { 89, 544, 1, 14, 14, 2, 3, }, { 93, 544, 1, 14, 14, 2, 3, }, { 96, 544, 1, 14, 14, 2, 3, }, { 100, 544, 1, 14, 14, 2, 3, }, { 1, 16, 1, 112, 112, 1, 3, }, { 1, 24, 1, 56, 56, 1, 3, }, { 1, 96, 1, 112, 112, 2, 3, }, { 1, 192, 1, 28, 28, 1, 3, }, { 1, 96, 1, 28, 28, 1, 5, }, { 1, 144, 1, 56, 56, 2, 5, }, { 1, 192, 1, 28, 28, 1, 5, }, { 1, 192, 1, 28, 28, 2, 5, }, { 1, 192, 1, 14, 14, 1, 5, }, { 1, 336, 1, 14, 14, 1, 5, }, { 1, 384, 1, 14, 14, 1, 5, }, { 1, 672, 1, 14, 14, 1, 5, }, { 1, 672, 1, 14, 14, 2, 5, }, { 1, 1104, 1, 7, 7, 1, 5, }, { 1, 32, 1, 112, 112, 1, 3, }, { 1, 144, 1, 56, 56, 1, 3, }, { 1, 240, 1, 28, 28, 2, 3, }, { 1, 480, 1, 14, 14, 1, 3, }, { 1, 1152, 1, 7, 7, 1, 3, }, { 1, 240, 1, 28, 28, 1, 5, }, { 1, 480, 1, 14, 14, 1, 5, }, { 1, 576, 1, 14, 14, 1, 5, }, { 1, 768, 1, 14, 14, 2, 5, }, { 1, 1104, 1, 7, 7, 1, 3, }, { 1, 1152, 1, 7, 7, 1, 5, }, { 1, 32, 1, 400, 400, 1, 3, }, { 1, 96, 1, 400, 400, 2, 3, }, { 1, 144, 1, 200, 200, 1, 3, }, { 1, 144, 1, 200, 200, 2, 3, }, { 1, 192, 1, 100, 100, 1, 3, }, { 1, 192, 1, 100, 100, 2, 3, }, { 1, 384, 1, 50, 50, 1, 3, }, { 1, 576, 1, 50, 50, 1, 3, }, // 2 output channels per group { 1, 128, 2, 32, 100, 1, 3, }, }; // clang-format on // Depthwise is memory BW bound so we want to flush LLC. bool flush = true; std::vector<char> llc; if (flush) { llc.resize(128 * 1024 * 1024, 1.0); } constexpr int NWARMUP = 4; constexpr int NITER = 16; for (auto shape : shapes) { int N = shape[0]; int G = shape[1]; int OC_PER_G = shape[2]; int H = shape[3]; int W = shape[4]; int stride_h = shape[5]; int stride_w = stride_h; int R = shape[6]; int S = R; int PAD_T = (R - 1) / 2, PAD_B = (R - 1) / 2, PAD_L = (S - 1) / 2, PAD_R = (S - 1) / 2; int OC = G * OC_PER_G; conv_param_t<2> conv_p( N, G, OC, {H, W}, G, {R, S}, {stride_h, stride_w}, {PAD_T, PAD_L, PAD_B, PAD_R}); int H_OUT = conv_p.OUT_DIM[0]; int W_OUT = conv_p.OUT_DIM[1]; int MDim = N * H_OUT * W_OUT; int KDim = R * S * G; int KDimPerGroup = KDim / conv_p.G; aligned_vector<uint8_t> A(N * H * W * G); aligned_vector<int8_t> B(KDim * OC_PER_G); aligned_vector<int8_t> B_tr(B.size()); aligned_vector<int32_t> C_ref(MDim * OC), C(C_ref.size()); aligned_vector<uint8_t> C_uint8_ref(C_ref.size()), C_uint8(C_ref.size()); randFill<uint8_t>(A, 0, 86); int32_t A_zero_point = 43; randFill<int8_t>(B, -16, 16); int32_t B_zero_point = 5; aligned_vector<float> C_multiplier(1); randFill(C_multiplier, 0.001234f / 2, 0.001234f * 3 / 2); int32_t C_zero_point = 5; vector<int32_t> row_offsets(MDim); // im2col to compute row offset later vector<uint8_t> A_im2col(MDim * KDim); im2col_ref(conv_p, A.data(), A_zero_point, A_im2col.data()); aligned_vector<int32_t> col_offsets(OC); aligned_vector<int32_t> bias(OC); randFill(col_offsets, -100, 100); randFill(bias, -40, 40); // reference implementation conv_ref expects weights to be in G (R S C/G) // K/G transposeConvWeights(conv_p, B.data(), B_tr.data()); conv_ref(conv_p, A.data(), A_zero_point, B_tr.data(), C_ref.data()); for (int g = 0; g < conv_p.G; ++g) { // Compute row offset row_offsets_u8acc32_ref( MDim, KDimPerGroup, KDim, A_im2col.data() + g * KDimPerGroup, row_offsets.data()); // Requantization requantize_u8acc32_ref( MDim, OC_PER_G, OC, C_ref.data() + g * OC_PER_G, C_uint8_ref.data() + g * OC_PER_G, C_multiplier.data(), C_zero_point, A_zero_point, &B_zero_point, row_offsets.data(), col_offsets.data() + g * OC_PER_G, bias.data() + g * OC_PER_G, OC); } PackedDepthWiseConvMatrix Bp(OC, R * S, B.data()); double bytes = G * (N * (2. * sizeof(int32_t) * H_OUT * W_OUT * OC_PER_G + H * W) + R * S * OC_PER_G); double ops = 2.0 * N * H_OUT * W_OUT * OC * R * S; double ttot = measureWithWarmup( [&]() { int num_threads = fbgemm_get_num_threads(); int tid = fbgemm_get_thread_num(); depthwise_2d_same_pad<QuantizationGranularity::TENSOR>( N, H, W, G, OC, stride_h, stride_w, A_zero_point, A.data(), &B_zero_point, Bp, C_multiplier.data(), C_zero_point, C_uint8.data(), col_offsets.data(), bias.data(), false, /* fuse_relu */ nullptr, /* act_scale * w_scale */ tid, num_threads); }, NWARMUP, NITER, [&]() { if (flush) { llc_flush(llc); } }, true /*useOpenMP*/); // correctness check for (int n = 0; n < N; ++n) { for (int h = 0; h < H_OUT; ++h) { for (int w = 0; w < W_OUT; ++w) { for (int k = 0; k < OC; ++k) { uint8_t expected = C_uint8_ref[((n * H_OUT + h) * W_OUT + w) * OC + k]; uint8_t actual = C_uint8[((n * H_OUT + h) * W_OUT + w) * OC + k]; if (expected != actual) { cerr << "Depthwise 3x3 results differ at (" << n << ", " << h << ", " << w << ", " << k << "). expected " << (int)expected << " actual " << (int)actual << endl; return -1; } assert(expected == actual); } } } } // Report performance printf( "N = %d G = %d OC = %d H = %d W = %d stride = %d R = %d\n", N, G, OC, H, W, stride_h, R); printf("GB/s = %f Gops/s = %f\n", bytes / ttot / 1e9, ops / ttot / 1e9); } // for each shape return 0; }