bench/EmbeddingSpMDMNBitRowWiseSparseBenchmark.cc (309 lines of code) (raw):

/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ #include <immintrin.h> #include <algorithm> #include <cassert> #include <chrono> #include <cmath> #include <cstdint> #include <iomanip> #include <iostream> #include <map> #include <numeric> #include <random> #include <set> #include <vector> #include "./BenchUtils.h" #include "fbgemm/Fbgemm.h" #include "fbgemm/FbgemmConvert.h" #include "src/RefImplementations.h" using namespace std; using namespace fbgemm; void print_fused_table(int rows, int embedding_dim, const uint8_t* table) { for (int i = 0; i < rows; i++) { std::cout << "row: " << i << " : " << std::endl; for (int ii = 0; ii < embedding_dim; ii++) { std::cout << (int)table[i * (embedding_dim + 2 * sizeof(float)) + ii] << ","; } std::cout << std::endl; } } static vector<vector<int>> GetInputs_() { vector<vector<int>> input_dims = { // batch size, number of rows of table, emb dim , avg lengthl // TODO: Add more inputs // Use these -- but they are slow. {10, 4000000, 32, 100}, {10, 4000000, 64, 100}, {10, 4000000, 128, 100}, {10, 4000000, 256, 100}, // Use these for debugging // {2, 16, 128, 10}, // {10, 4000, 128, 100}, // {10, 4000, 128, 100}, // {10, 4000, 128, 100}, }; return input_dims; } int run_benchmark( int bit_rate, int batch_size, int num_rows, int embedding_dim, int average_len, bool normalize_by_lengths, bool use_32_bit_indices = false, bool prefetch = false) { // Generate mapping table default_random_engine generator; constexpr float sparsity = 0.7; vector<int32_t> mapping_table(num_rows); bernoulli_distribution row_prune_dist(sparsity); int num_compressed_rows = 0; for (int i = 0; i < num_rows; ++i) { if (row_prune_dist(generator)) { // pruned mapping_table[i] = -1; } else { mapping_table[i] = num_compressed_rows; ++num_compressed_rows; } } // Create embedding table int num_elem_per_byte = 8 / bit_rate; int fused_embedding_dim = (embedding_dim + num_elem_per_byte - 1) / num_elem_per_byte + 2 * sizeof(float16); normal_distribution<float> embedding_distribution; vector<uint8_t> fused_embedding_table( num_compressed_rows * fused_embedding_dim); for (int i = 0; i < num_compressed_rows; i++) { for (int ii = 0; ii < (embedding_dim + num_elem_per_byte - 1) / num_elem_per_byte; ii++) { fused_embedding_table[i * fused_embedding_dim + ii] = 2; } float16* scale_bias = reinterpret_cast<float16*>( &fused_embedding_table[i * fused_embedding_dim] + (embedding_dim + num_elem_per_byte - 1) / num_elem_per_byte); float scale = 2.0f; float bias = 1.0f; FloatToFloat16_ref(&scale, scale_bias, 1, true /* clip */); FloatToFloat16_ref(&bias, scale_bias + 1, 1, true /* clip */); } // print_fused_table(num_rows, embedding_dim, fused_embedding_table); // Generate lengths uniform_int_distribution<int> length_distribution( 1, std::min(2 * average_len + 1, num_rows)); vector<int> offsets(batch_size + 1); offsets[0] = 0; for (int i = 0; i < batch_size; ++i) { offsets[i + 1] = offsets[i] + length_distribution(generator); } // Compute the number of indices int lengths_sum = offsets[batch_size]; // Generate indices vector<int64_t> indices; vector<int32_t> indices_32; vector<int> container(num_rows); map<int64_t, set<int>> dedup_map; // index -> set(output index) // please note we generate unique indices for (int i = 0; i < batch_size; ++i) { iota(container.begin(), container.end(), 0); random_shuffle(container.begin(), container.end()); copy( container.begin(), container.begin() + (offsets[i + 1] - offsets[i]), back_inserter(indices)); } copy(begin(indices), end(indices), back_inserter(indices_32)); // Compute the number of valid indices int num_valid_indices = 0; for (int index : indices) { if (mapping_table[index] != -1) { ++num_valid_indices; } } cout << "lengths_sum " << lengths_sum << " num_valid_indices " << num_valid_indices << endl; // Generate weights vector<float> weights(lengths_sum); for (int i = 0; i < lengths_sum; ++i) { weights[i] = embedding_distribution(generator); } vector<float> output_sls_ref(batch_size * embedding_dim); vector<float> output_slws_ref(output_sls_ref.size()), output_sls(output_sls_ref.size()), output_slws(output_sls_ref.size()); constexpr int NUM_WARMUP = 4; constexpr int NUM_ITER = 10; // Only counts the number of bytes for reading embedding table and ignore // others. Should be good enough as long as embdding_dim is big enough. constexpr int CACHE_LINE_SIZE = 64; double bytes = lengths_sum * 2 * (use_32_bit_indices ? sizeof(int32_t) : sizeof(int64_t)) + num_valid_indices * fused_embedding_dim; double bytes_padded = lengths_sum * ((use_32_bit_indices ? sizeof(int32_t) : sizeof(int64_t)) + CACHE_LINE_SIZE) + num_valid_indices * CACHE_LINE_SIZE * static_cast<int>( (fused_embedding_dim + CACHE_LINE_SIZE - 1) / CACHE_LINE_SIZE); for (bool has_weight : {false, true}) { vector<float>& output_ref = has_weight ? output_slws_ref : output_sls_ref; bool success = false, success_ref = false; for (int i = 0; i < NUM_WARMUP + NUM_ITER; ++i) { if (use_32_bit_indices) { success_ref = EmbeddingSpMDMNBitRowWiseSparse_ref( bit_rate, embedding_dim, batch_size, lengths_sum, num_rows, fused_embedding_table.data(), indices_32.data(), mapping_table.data(), offsets.data(), has_weight ? weights.data() : nullptr, normalize_by_lengths, output_ref.data()); } else { success_ref = EmbeddingSpMDMNBitRowWiseSparse_ref( bit_rate, embedding_dim, batch_size, lengths_sum, num_rows, fused_embedding_table.data(), indices.data(), mapping_table.data(), offsets.data(), has_weight ? weights.data() : nullptr, normalize_by_lengths, output_ref.data()); } } vector<float>& output = has_weight ? output_slws : output_sls; auto kernel_32 = GenerateEmbeddingSpMDMNBitRowWiseSparse<int32_t>( bit_rate, embedding_dim, has_weight, normalize_by_lengths, prefetch ? 16 : 0); auto kernel_64 = GenerateEmbeddingSpMDMNBitRowWiseSparse<int64_t>( bit_rate, embedding_dim, has_weight, normalize_by_lengths, prefetch ? 16 : 0); for (bool flush_cache : {false, true}) { double t = measureWithWarmup( [&]() { if (use_32_bit_indices) { success = kernel_32( batch_size, lengths_sum, num_rows, fused_embedding_table.data(), indices_32.data(), offsets.data(), has_weight ? weights.data() : nullptr, output.data(), mapping_table.data()); } else { success = kernel_64( batch_size, lengths_sum, num_rows, fused_embedding_table.data(), indices.data(), offsets.data(), has_weight ? weights.data() : nullptr, output.data(), mapping_table.data()); } }, NUM_WARMUP, NUM_ITER, [&]() { if (flush_cache) { cache_evict(fused_embedding_table); cache_evict(indices); cache_evict(indices_32); cache_evict(offsets); cache_evict(weights); cache_evict(output); } }); // printMatrix( // matrix_op_t::NoTranspose, // output.data(), // batch_size, // embedding_dim, // embedding_dim, // ""); // printMatrix( // matrix_op_t::NoTranspose, // output_ref.data(), // batch_size, // embedding_dim, // embedding_dim, // ""); // Check correctness if (!flush_cache) { if (success != success_ref) { assert( false && "ERROR: refernce impl and JIT imp did not both succeed"); } else if (success) { for (size_t i = 0; i < output.size(); ++i) { assert(fabs(output[i] - output_ref[i]) < 1e-3); if (fabs(output[i] - output_ref[i]) >= 1e-3) { cout << i << " " << output[i] << " " << output_ref[i] << endl; } } } } if (has_weight) { cout << setw(16) << "SLW(WEIGHTED) "; } else { cout << setw(16) << "SLS "; } if (flush_cache) { cout << setw(20) << "cache flushed"; } else { cout << setw(20) << "cache not flushed"; } if (prefetch) { cout << setw(16) << "prefetch on"; } else { cout << setw(16) << "prefetch off"; } cout << setw(8) << "b/w" << setw(10) << bytes / 1e9 / t << " GB/s" << setw(20) << "effective b/w: " << setw(16) << bytes_padded / 1e9 / t << "GB/s" << setw(8) << " time " << setw(16) << t << endl; } // flush_cache } // has_weight return 0; } int main() { int batch_size; int num_rows; int embedding_dim; int average_len; vector<vector<int>> inputs(GetInputs_()); for (int bit_rate : {2, 4}) { for (auto& input : inputs) { assert(input.size() > 3); batch_size = input[0]; num_rows = input[1]; embedding_dim = input[2]; average_len = input[3]; cout << "bit_rate" << setw(6) << bit_rate << "batch size" << setw(6) << batch_size << setw(10) << "num rows" << setw(16) << num_rows << setw(10) << "emb dim" << setw(6) << embedding_dim << setw(16) << "avg length" << setw(6) << average_len << endl; // args: batch sz, num rows, emb dim, avg len, normalize, use 32b, // prefetch cout << "64 bit indices, "; run_benchmark( bit_rate, batch_size, num_rows, embedding_dim, average_len, false); // normalize_by_lengths cout << "64 bit indices with prefetching, "; run_benchmark( bit_rate, batch_size, num_rows, embedding_dim, average_len, false, // normalize_by_lengths false, // use_32_bit_indices true); // prefetch cout << "32 bit indices, "; run_benchmark( bit_rate, batch_size, num_rows, embedding_dim, average_len, false, // normalize_by_lengths true); // use_32_bit_indices cout << "32 bit indices with prefetching, "; run_benchmark( bit_rate, batch_size, num_rows, embedding_dim, average_len, false, // normalize_by_lengths true, // use_32_bit_indices true); // prefetch // running with normalize by lengths // run_benchmark(batch_size, num_rows, embedding_dim, average_len, // true); run_benchmark( // batch_size, num_rows, embedding_dim, average_len, true, // true); // run_benchmark( // batch_size, // num_rows, // embedding_dim, // average_len, // false, // true, // true); } } return 0; }