bench/EmbeddingSpMDMNBitRowWiseSparseBenchmark.cc (309 lines of code) (raw):
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <immintrin.h>
#include <algorithm>
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstdint>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <random>
#include <set>
#include <vector>
#include "./BenchUtils.h"
#include "fbgemm/Fbgemm.h"
#include "fbgemm/FbgemmConvert.h"
#include "src/RefImplementations.h"
using namespace std;
using namespace fbgemm;
void print_fused_table(int rows, int embedding_dim, const uint8_t* table) {
for (int i = 0; i < rows; i++) {
std::cout << "row: " << i << " : " << std::endl;
for (int ii = 0; ii < embedding_dim; ii++) {
std::cout << (int)table[i * (embedding_dim + 2 * sizeof(float)) + ii]
<< ",";
}
std::cout << std::endl;
}
}
static vector<vector<int>> GetInputs_() {
vector<vector<int>> input_dims = {
// batch size, number of rows of table, emb dim , avg lengthl
// TODO: Add more inputs
// Use these -- but they are slow.
{10, 4000000, 32, 100},
{10, 4000000, 64, 100},
{10, 4000000, 128, 100},
{10, 4000000, 256, 100},
// Use these for debugging
// {2, 16, 128, 10},
// {10, 4000, 128, 100},
// {10, 4000, 128, 100},
// {10, 4000, 128, 100},
};
return input_dims;
}
int run_benchmark(
int bit_rate,
int batch_size,
int num_rows,
int embedding_dim,
int average_len,
bool normalize_by_lengths,
bool use_32_bit_indices = false,
bool prefetch = false) {
// Generate mapping table
default_random_engine generator;
constexpr float sparsity = 0.7;
vector<int32_t> mapping_table(num_rows);
bernoulli_distribution row_prune_dist(sparsity);
int num_compressed_rows = 0;
for (int i = 0; i < num_rows; ++i) {
if (row_prune_dist(generator)) {
// pruned
mapping_table[i] = -1;
} else {
mapping_table[i] = num_compressed_rows;
++num_compressed_rows;
}
}
// Create embedding table
int num_elem_per_byte = 8 / bit_rate;
int fused_embedding_dim =
(embedding_dim + num_elem_per_byte - 1) / num_elem_per_byte +
2 * sizeof(float16);
normal_distribution<float> embedding_distribution;
vector<uint8_t> fused_embedding_table(
num_compressed_rows * fused_embedding_dim);
for (int i = 0; i < num_compressed_rows; i++) {
for (int ii = 0;
ii < (embedding_dim + num_elem_per_byte - 1) / num_elem_per_byte;
ii++) {
fused_embedding_table[i * fused_embedding_dim + ii] = 2;
}
float16* scale_bias = reinterpret_cast<float16*>(
&fused_embedding_table[i * fused_embedding_dim] +
(embedding_dim + num_elem_per_byte - 1) / num_elem_per_byte);
float scale = 2.0f;
float bias = 1.0f;
FloatToFloat16_ref(&scale, scale_bias, 1, true /* clip */);
FloatToFloat16_ref(&bias, scale_bias + 1, 1, true /* clip */);
}
// print_fused_table(num_rows, embedding_dim, fused_embedding_table);
// Generate lengths
uniform_int_distribution<int> length_distribution(
1, std::min(2 * average_len + 1, num_rows));
vector<int> offsets(batch_size + 1);
offsets[0] = 0;
for (int i = 0; i < batch_size; ++i) {
offsets[i + 1] = offsets[i] + length_distribution(generator);
}
// Compute the number of indices
int lengths_sum = offsets[batch_size];
// Generate indices
vector<int64_t> indices;
vector<int32_t> indices_32;
vector<int> container(num_rows);
map<int64_t, set<int>> dedup_map; // index -> set(output index)
// please note we generate unique indices
for (int i = 0; i < batch_size; ++i) {
iota(container.begin(), container.end(), 0);
random_shuffle(container.begin(), container.end());
copy(
container.begin(),
container.begin() + (offsets[i + 1] - offsets[i]),
back_inserter(indices));
}
copy(begin(indices), end(indices), back_inserter(indices_32));
// Compute the number of valid indices
int num_valid_indices = 0;
for (int index : indices) {
if (mapping_table[index] != -1) {
++num_valid_indices;
}
}
cout << "lengths_sum " << lengths_sum << " num_valid_indices "
<< num_valid_indices << endl;
// Generate weights
vector<float> weights(lengths_sum);
for (int i = 0; i < lengths_sum; ++i) {
weights[i] = embedding_distribution(generator);
}
vector<float> output_sls_ref(batch_size * embedding_dim);
vector<float> output_slws_ref(output_sls_ref.size()),
output_sls(output_sls_ref.size()), output_slws(output_sls_ref.size());
constexpr int NUM_WARMUP = 4;
constexpr int NUM_ITER = 10;
// Only counts the number of bytes for reading embedding table and ignore
// others. Should be good enough as long as embdding_dim is big enough.
constexpr int CACHE_LINE_SIZE = 64;
double bytes = lengths_sum * 2 *
(use_32_bit_indices ? sizeof(int32_t) : sizeof(int64_t)) +
num_valid_indices * fused_embedding_dim;
double bytes_padded = lengths_sum *
((use_32_bit_indices ? sizeof(int32_t) : sizeof(int64_t)) +
CACHE_LINE_SIZE) +
num_valid_indices * CACHE_LINE_SIZE *
static_cast<int>(
(fused_embedding_dim + CACHE_LINE_SIZE - 1) / CACHE_LINE_SIZE);
for (bool has_weight : {false, true}) {
vector<float>& output_ref = has_weight ? output_slws_ref : output_sls_ref;
bool success = false, success_ref = false;
for (int i = 0; i < NUM_WARMUP + NUM_ITER; ++i) {
if (use_32_bit_indices) {
success_ref = EmbeddingSpMDMNBitRowWiseSparse_ref(
bit_rate,
embedding_dim,
batch_size,
lengths_sum,
num_rows,
fused_embedding_table.data(),
indices_32.data(),
mapping_table.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data());
} else {
success_ref = EmbeddingSpMDMNBitRowWiseSparse_ref(
bit_rate,
embedding_dim,
batch_size,
lengths_sum,
num_rows,
fused_embedding_table.data(),
indices.data(),
mapping_table.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data());
}
}
vector<float>& output = has_weight ? output_slws : output_sls;
auto kernel_32 = GenerateEmbeddingSpMDMNBitRowWiseSparse<int32_t>(
bit_rate,
embedding_dim,
has_weight,
normalize_by_lengths,
prefetch ? 16 : 0);
auto kernel_64 = GenerateEmbeddingSpMDMNBitRowWiseSparse<int64_t>(
bit_rate,
embedding_dim,
has_weight,
normalize_by_lengths,
prefetch ? 16 : 0);
for (bool flush_cache : {false, true}) {
double t = measureWithWarmup(
[&]() {
if (use_32_bit_indices) {
success = kernel_32(
batch_size,
lengths_sum,
num_rows,
fused_embedding_table.data(),
indices_32.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
output.data(),
mapping_table.data());
} else {
success = kernel_64(
batch_size,
lengths_sum,
num_rows,
fused_embedding_table.data(),
indices.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
output.data(),
mapping_table.data());
}
},
NUM_WARMUP,
NUM_ITER,
[&]() {
if (flush_cache) {
cache_evict(fused_embedding_table);
cache_evict(indices);
cache_evict(indices_32);
cache_evict(offsets);
cache_evict(weights);
cache_evict(output);
}
});
// printMatrix(
// matrix_op_t::NoTranspose,
// output.data(),
// batch_size,
// embedding_dim,
// embedding_dim,
// "");
// printMatrix(
// matrix_op_t::NoTranspose,
// output_ref.data(),
// batch_size,
// embedding_dim,
// embedding_dim,
// "");
// Check correctness
if (!flush_cache) {
if (success != success_ref) {
assert(
false && "ERROR: refernce impl and JIT imp did not both succeed");
} else if (success) {
for (size_t i = 0; i < output.size(); ++i) {
assert(fabs(output[i] - output_ref[i]) < 1e-3);
if (fabs(output[i] - output_ref[i]) >= 1e-3) {
cout << i << " " << output[i] << " " << output_ref[i] << endl;
}
}
}
}
if (has_weight) {
cout << setw(16) << "SLW(WEIGHTED) ";
} else {
cout << setw(16) << "SLS ";
}
if (flush_cache) {
cout << setw(20) << "cache flushed";
} else {
cout << setw(20) << "cache not flushed";
}
if (prefetch) {
cout << setw(16) << "prefetch on";
} else {
cout << setw(16) << "prefetch off";
}
cout << setw(8) << "b/w" << setw(10) << bytes / 1e9 / t << " GB/s"
<< setw(20) << "effective b/w: " << setw(16)
<< bytes_padded / 1e9 / t << "GB/s" << setw(8) << " time "
<< setw(16) << t << endl;
} // flush_cache
} // has_weight
return 0;
}
int main() {
int batch_size;
int num_rows;
int embedding_dim;
int average_len;
vector<vector<int>> inputs(GetInputs_());
for (int bit_rate : {2, 4}) {
for (auto& input : inputs) {
assert(input.size() > 3);
batch_size = input[0];
num_rows = input[1];
embedding_dim = input[2];
average_len = input[3];
cout << "bit_rate" << setw(6) << bit_rate << "batch size" << setw(6)
<< batch_size << setw(10) << "num rows" << setw(16) << num_rows
<< setw(10) << "emb dim" << setw(6) << embedding_dim << setw(16)
<< "avg length" << setw(6) << average_len << endl;
// args: batch sz, num rows, emb dim, avg len, normalize, use 32b,
// prefetch
cout << "64 bit indices, ";
run_benchmark(
bit_rate,
batch_size,
num_rows,
embedding_dim,
average_len,
false); // normalize_by_lengths
cout << "64 bit indices with prefetching, ";
run_benchmark(
bit_rate,
batch_size,
num_rows,
embedding_dim,
average_len,
false, // normalize_by_lengths
false, // use_32_bit_indices
true); // prefetch
cout << "32 bit indices, ";
run_benchmark(
bit_rate,
batch_size,
num_rows,
embedding_dim,
average_len,
false, // normalize_by_lengths
true); // use_32_bit_indices
cout << "32 bit indices with prefetching, ";
run_benchmark(
bit_rate,
batch_size,
num_rows,
embedding_dim,
average_len,
false, // normalize_by_lengths
true, // use_32_bit_indices
true); // prefetch
// running with normalize by lengths
// run_benchmark(batch_size, num_rows, embedding_dim, average_len,
// true); run_benchmark(
// batch_size, num_rows, embedding_dim, average_len, true,
// true);
// run_benchmark(
// batch_size,
// num_rows,
// embedding_dim,
// average_len,
// false,
// true,
// true);
}
}
return 0;
}