bench/PackedFloatInOutBenchmark.cc (242 lines of code) (raw):
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <algorithm>
#include <chrono>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <vector>
#ifdef _OPENMP
#include <omp.h>
#endif
#ifdef USE_MKL
#include <mkl.h>
#endif
#include "./BenchUtils.h"
#include "fbgemm/Fbgemm.h"
#include "src/RefImplementations.h"
#include "test/QuantizationHelpers.h"
using namespace std;
using namespace fbgemm;
void performance_test() {
// clang-format off
const vector<vector<int>> shapes = {
// NOTE: clang-format wants to use a different formatting but the current
// formatting should be easier to read.
{1, 128, 512},
{1, 1024, 256},
{1, 2048, 512},
{1, 4096, 1024},
{6, 256, 1024},
{6, 256, 2048},
{6, 512, 512},
{6, 1024, 256},
{6, 2048, 256},
{6, 2048, 512},
{6, 4096, 256},
{6, 4096, 1024},
{6, 4096, 2048},
{10, 2048, 256},
{10, 4096, 1024},
{20, 2048, 256},
{20, 4096, 1024},
{102, 1024, 512},
{102, 2323, 256},
{102, 512, 256},
{1, 800, 3200},
{1, 800, 8000},
{16, 256, 1500},
{16, 256, 1567},
{1, 128, 2876},
{16, 128, 1567},
{1, 128, 2722},
{16, 256, 512},
};
// clang-format on
bool flush = true;
std::vector<char> llc;
if (flush) {
llc.resize(128 * 1024 * 1024, 1.0);
}
constexpr int NWARMUP = 4;
constexpr int NITER = 10;
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
cout << "WARNING: the timer may be inaccurate when used by multiple threads."
<< endl;
cout << setw(8) << "M, " << setw(8) << "N, " << setw(8) << "K, " << setw(22)
<< "Packing (ms), " << setw(22) << "Kernel (ms), " << setw(22)
<< "Postprocessing (ms), " << setw(22) << "Total (ms), " << setw(22)
<< "Type, " << setw(5) << "GOPs" << endl;
#else
cout << setw(8) << "M, " << setw(8) << "N, " << setw(8) << "K, " << setw(22)
<< "Type, " << setw(5) << "GOPS" << endl;
#endif
chrono::time_point<chrono::high_resolution_clock> start, end;
for (auto shape : shapes) {
int m = shape[0];
int n = shape[1];
int k = shape[2];
aligned_vector<float> Afp32(m * k);
aligned_vector<uint8_t> Aint8(Afp32.size());
aligned_vector<float> Bfp32(k * n);
aligned_vector<int8_t> Bint8(Bfp32.size());
aligned_vector<float> Cfp32_mkl(m * n);
aligned_vector<float> Cfp32_fb(Cfp32_mkl.size());
aligned_vector<uint8_t> Cint8_fb(Cfp32_mkl.size());
aligned_vector<int32_t> Cint32_buffer(Cfp32_mkl.size());
// A matrix
randFill<uint8_t>(Aint8, 0, 255);
float Aint8_scale = 0.11;
int32_t Aint8_zero_point = 43;
for (size_t i = 0; i < Afp32.size(); ++i) {
Afp32[i] = Aint8_scale * (Aint8[i] - Aint8_zero_point);
}
randFill<int8_t>(Bint8, -128, 127);
avoidOverflow(m, n, k, Aint8.data(), Bint8.data());
float Bint8_scale = 0.49;
int32_t Bint8_zero_point = -30;
for (size_t i = 0; i < Bfp32.size(); ++i) {
Bfp32[i] = Bint8_scale * (Bint8[i] - Bint8_zero_point);
}
// computing column offset
vector<int32_t> col_offsets(n);
col_offsets_with_zero_pt_s8acc32_ref(
k, n, n, Bint8.data(), &Bint8_zero_point, col_offsets.data(), n);
double ttot = 0;
std::string type;
double nops = 2.0 * m * n * k;
#ifdef USE_MKL
const float alpha = 1.f;
const float beta = 0.f;
type = "MKL_FP32";
ttot = measureWithWarmup(
[&]() {
cblas_sgemm(
CblasRowMajor,
CblasNoTrans,
CblasNoTrans,
m,
n,
k,
alpha,
Afp32.data(),
k,
Bfp32.data(),
n,
beta,
Cfp32_mkl.data(),
n);
},
NWARMUP,
NITER,
[&]() {
if (flush) {
llc_flush(llc);
}
});
ttot *= 1e9; // convert to ns
if (flush) {
((volatile char*)(llc.data()))[0] += 1;
}
cout << setw(6) << m << ", " << setw(6) << n << ", " << setw(6) << k
<< ", ";
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
cout << setw(20) << fixed << setprecision(3) << 0.0f << ", " << setw(20)
<< 0.0f << ", " << setw(20) << 0.0f << ", " << setw(20) << 0.0f
<< ", ";
#endif
cout << setw(20) << type << ", " << setw(5) << fixed << setprecision(1)
<< nops / ttot << endl;
#endif
// printMatrix(matrix_op_t::NoTranspose, Bint8.data(), k, n, n, "B
// unpacked");
// printMatrix(matrix_op_t::NoTranspose, Aint8.data(), m, k, k,
// "A unpacked");
// printMatrix(matrix_op_t::NoTranspose, Cfp32_mkl.data(),
// m, n, n, "C mkl fp32");
// printMatrix(matrix_op_t::NoTranspose,
// Cint8_local.data(), m, n, n, "C requantized");
// printMatrix(matrix_op_t::NoTranspose, col_offsets.data(), 1, n, n, "col
// offsets before");
vector<int32_t> row_offset_buf(
PackAWithQuantRowOffset<uint8_t>::rowOffsetBufferSize());
PackAWithQuantRowOffset<uint8_t> packAN(
matrix_op_t::NoTranspose,
m,
k,
Afp32.data(),
k,
nullptr, /*buffer for packed matrix*/
Aint8_scale,
Aint8_zero_point,
1, /*groups*/
row_offset_buf.data());
PackBMatrix<int8_t> packedBN(
matrix_op_t::NoTranspose, k, n, Bint8.data(), n, nullptr, 1);
DoNothing<float, float> doNothingObj{};
ReQuantizeForFloat<false> outputProcObj(
doNothingObj,
Aint8_scale,
&Bint8_scale,
Aint8_zero_point,
&Bint8_zero_point,
packAN.getRowOffsetBuffer(),
col_offsets.data(),
nullptr,
n);
ttot = 0;
type = "FBGEMM_i8_acc32";
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
double total_packing_time = 0.0;
double total_computing_time = 0.0;
double total_kernel_time = 0.0;
double total_postprocessing_time = 0.0;
double total_run_time = 0.0;
#endif
cout << setw(6) << m << ", " << setw(6) << n << ", " << setw(6) << k
<< ", ";
for (auto i = 0; i < NWARMUP + NITER; ++i) {
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
packing_time = 0.0;
computing_time = 0.0;
kernel_time = 0.0;
postprocessing_time = 0.0;
run_time = 0.0;
#endif
llc_flush(llc);
start = chrono::high_resolution_clock::now();
fbgemmPacked(
packAN,
packedBN,
Cfp32_fb.data(),
(int32_t*)Cfp32_fb.data(),
n,
outputProcObj,
0,
1);
end = chrono::high_resolution_clock::now();
if (i >= NWARMUP) {
auto dur = chrono::duration_cast<chrono::nanoseconds>(end - start);
ttot += dur.count();
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
total_packing_time += packing_time;
total_computing_time += computing_time;
total_kernel_time += kernel_time;
total_postprocessing_time += postprocessing_time;
total_run_time += run_time;
#endif
}
}
if (flush) {
((volatile char*)(llc.data()))[0] += 1;
}
// printMatrix(matrix_op_t::NoTranspose, Bint8.data(), k, n, n, "B
// unpacked");
// printMatrix(matrix_op_t::NoTranspose, Aint8.data(), m, k, k,
// "A unpacked");
// printMatrix(matrix_op_t::NoTranspose, Cint8_local.data(),
// m, n, n, "C requantized after");
// printMatrix(matrix_op_t::NoTranspose,
// Cint8_fb.data(), m, n, n, "C fb");
// printMatrix(matrix_op_t::NoTranspose,
// col_offsets.data(), 1, n, n, "col offsets after");
// compare_buffers(row_offsets.data(), row_offset_buf.data(),
// row_offsets.size(), 5);
// printMatrix(matrix_op_t::NoTranspose, Cfp32_fb.data(),
// m, n, n, "C fb fp32");
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
cout << setprecision(3) << setw(20)
<< total_packing_time / (double)NITER / 1e6 << ", " << setw(20)
<< total_kernel_time / (double)NITER / 1e6 << ", " << setw(20)
<< total_postprocessing_time / (double)NITER / 1e6 << ", " << setw(20)
<< total_run_time / (double)NITER / 1e6 << ", ";
#endif
cout << setw(20) << type << ", " << setw(5) << fixed << setprecision(1)
<< NITER * nops / ttot << endl;
cout << endl;
// cout << "total time: " << ttot << " ns" << endl;
#ifdef USE_MKL
// correctness check
float maximum = *max_element(Cfp32_mkl.begin(), Cfp32_mkl.end());
float minimum = *min_element(Cfp32_mkl.begin(), Cfp32_mkl.end());
float atol = (maximum - minimum) / 255 / 1.9;
compare_buffers(Cfp32_mkl.data(), Cfp32_fb.data(), m, n, n, 5, atol);
#endif
}
}
int main(int /* unused */, char** /* unused */) {
#ifdef _OPENMP
// Use 1 thread unless OMP_NUM_THREADS is explicit set.
const char* val = getenv("OMP_NUM_THREADS");
if (val == nullptr || !*val) {
omp_set_num_threads(1);
}
#endif
performance_test();
return 0;
}