ASLRecognition/scripts/cnn_models.py (25 lines of code) (raw):
import torch.nn as nn
import torch.nn.functional as F
import joblib
# load the binarized labels
print('Loading label binarizer...')
lb = joblib.load('lb.pkl')
class CustomCNN(nn.Module):
def __init__(self):
super(CustomCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.conv2 = nn.Conv2d(16, 32, 5)
self.conv3 = nn.Conv2d(32, 64, 3)
self.conv4 = nn.Conv2d(64, 128, 5)
self.fc1 = nn.Linear(128, 256)
self.fc2 = nn.Linear(256, len(lb.classes_))
self.pool = nn.MaxPool2d(2, 2)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = self.pool(F.relu(self.conv4(x)))
bs, _, _, _ = x.shape
x = F.adaptive_avg_pool2d(x, 1).reshape(bs, -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x