def main()

in torchbenchmark/models/attention_is_all_you_need_pytorch/train.py [0:0]


def main():
    '''
    Usage:
    python train.py -data_pkl m30k_deen_shr.pkl -log m30k_deen_shr -embs_share_weight -proj_share_weight -label_smoothing -save_model trained -b 256 -warmup 128000
    '''

    parser = argparse.ArgumentParser()

    parser.add_argument('-data_pkl', default=None)     # all-in-1 data pickle or bpe field

    parser.add_argument('-train_path', default=None)   # bpe encoded data
    parser.add_argument('-val_path', default=None)     # bpe encoded data

    parser.add_argument('-epoch', type=int, default=10)
    parser.add_argument('-b', '--batch_size', type=int, default=2048)

    parser.add_argument('-d_model', type=int, default=512)
    parser.add_argument('-d_inner_hid', type=int, default=2048)
    parser.add_argument('-d_k', type=int, default=64)
    parser.add_argument('-d_v', type=int, default=64)

    parser.add_argument('-n_head', type=int, default=8)
    parser.add_argument('-n_layers', type=int, default=6)
    parser.add_argument('-warmup','--n_warmup_steps', type=int, default=4000)

    parser.add_argument('-dropout', type=float, default=0.1)
    parser.add_argument('-embs_share_weight', action='store_true')
    parser.add_argument('-proj_share_weight', action='store_true')

    parser.add_argument('-log', default=None)
    parser.add_argument('-save_model', default=None)
    parser.add_argument('-save_mode', type=str, choices=['all', 'best'], default='best')

    parser.add_argument('-no_cuda', action='store_true')
    parser.add_argument('-label_smoothing', action='store_true')
    parser.add_argument('--debug', metavar='fn', default="", help="Dump outputs into file")
    parser.add_argument('--script', default=False, help="Script the model")

    opt = parser.parse_args()
    opt.cuda = not opt.no_cuda
    opt.d_word_vec = opt.d_model

    if not opt.log and not opt.save_model:
        raise Exception('No experiment result will be saved.')

    if opt.batch_size < 2048 and opt.n_warmup_steps <= 4000:
        print('[Warning] The warmup steps may be not enough.\n'\
              '(sz_b, warmup) = (2048, 4000) is the official setting.\n'\
              'Using smaller batch w/o longer warmup may cause '\
              'the warmup stage ends with only little data trained.')

    device = torch.device('cuda' if opt.cuda else 'cpu')

    #========= Loading Dataset =========#

    if all((opt.train_path, opt.val_path)):
        training_data, validation_data = prepare_dataloaders_from_bpe_files(opt, device)
    elif opt.data_pkl:
        training_data, validation_data = prepare_dataloaders(opt, device)
    else:
        raise Exception("Error loading dataset")

    print(opt)

    transformer = Transformer(
        opt.src_vocab_size,
        opt.trg_vocab_size,
        src_pad_idx=opt.src_pad_idx,
        trg_pad_idx=opt.trg_pad_idx,
        trg_emb_prj_weight_sharing=opt.proj_share_weight,
        emb_src_trg_weight_sharing=opt.embs_share_weight,
        d_k=opt.d_k,
        d_v=opt.d_v,
        d_model=opt.d_model,
        d_word_vec=opt.d_word_vec,
        d_inner=opt.d_inner_hid,
        n_layers=opt.n_layers,
        n_head=opt.n_head,
        dropout=opt.dropout).to(device)
    if opt.script:
        print("scripted")
        transformer = torch.jit.script(transformer)
    else:
        print("eager mode")

    optimizer = ScheduledOptim(
        optim.Adam(transformer.parameters(), betas=(0.9, 0.98), eps=1e-09),
        2.0, opt.d_model, opt.n_warmup_steps)

    train(transformer, training_data, validation_data, optimizer, device, opt)
    assert(last_run)
    if opt.debug:
        o = transformer(*last_run)
        torch.save(o, opt.debug)