def prep()

in torchbenchmark/e2e_models/hf_bert/trainer.py [0:0]


    def prep(self, model_args, data_args, training_args):
        # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
        accelerator = Accelerator()
        accelerator.wait_for_everyone()
        raw_datasets = prep_dataset(data_args, training_args)
        num_labels, label_list, is_regression = prep_labels(data_args, raw_datasets)
        # Load pretrained model and tokenizer
        #
        # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
        # download model & vocab.
        config = AutoConfig.from_pretrained(
            model_args.config_name if model_args.config_name else model_args.model_name_or_path,
            num_labels=num_labels,
            finetuning_task=data_args.task_name,
            # cache_dir=model_args.cache_dir,
            # revision=model_args.model_revision,
            # use_auth_token=True if model_args.use_auth_token else None,
        )
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
            # cache_dir=model_args.cache_dir,
            use_fast=model_args.use_fast_tokenizer,
            # revision=model_args.model_revision,
            # use_auth_token=True if model_args.use_auth_token else None,
        )
        model = AutoModelForSequenceClassification.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            # cache_dir=model_args.cache_dir,
            # revision=model_args.model_revision,
            # use_auth_token=True if model_args.use_auth_token else None,
        )
        train_dataset, eval_dataset, _predict_dataset = preprocess_dataset(data_args, training_args, config, model, \
            tokenizer, raw_datasets, num_labels, label_list, is_regression)
        # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
        if data_args.pad_to_max_length:
            data_collator = default_data_collator
        elif training_args.fp16:
            data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
        else:
            data_collator = None
        train_dataloader = DataLoader(
            train_dataset, shuffle=True, collate_fn=data_collator, batch_size=training_args.per_device_train_batch_size)
        eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=training_args.per_device_eval_batch_size)

        # Optimizer
        # Split weights in two groups, one with weight decay and the other not.
        no_decay = ["bias", "LayerNorm.weight"]
        optimizer_grouped_parameters = [
            {
                "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
                "weight_decay": training_args.weight_decay,
            },
            {
                "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
                "weight_decay": 0.0,
            },
        ]
        optimizer = AdamW(optimizer_grouped_parameters, lr=training_args.learning_rate)

        # Prepare everything with our `accelerator`.
        model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
            model, optimizer, train_dataloader, eval_dataloader
        )

        # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
        # shorter in multiprocess)

        # Scheduler and math around the number of training steps.
        num_update_steps_per_epoch = math.ceil(len(train_dataloader) / training_args.gradient_accumulation_steps)
        if training_args.max_steps is None or training_args.max_steps == -1:
            training_args.max_steps = training_args.num_train_epochs * num_update_steps_per_epoch
        else:
            training_args.num_train_epochs = math.ceil(training_args.max_steps / num_update_steps_per_epoch)
        training_args.num_train_epochs = int(training_args.num_train_epochs)

        lr_scheduler = get_scheduler(
            name=training_args.lr_scheduler_type,
            optimizer=optimizer,
            num_warmup_steps=training_args.warmup_steps,
            num_training_steps=training_args.max_steps,
        )
        # Setup class members
        self.training_args = training_args
        self.is_regression = is_regression
        self.model = model
        self.optimizer = optimizer
        self.train_dataloader = train_dataloader
        self.eval_dataloader = eval_dataloader
        self.lr_scheduler = lr_scheduler
        self.accelerator = accelerator