test.py (98 lines of code) (raw):

"""test.py Setup and Run hub models. Make sure to enable an https proxy if necessary, or the setup steps may hang. """ # This file shows how to use the benchmark suite from user end. import gc import functools import os import traceback import unittest from unittest.mock import patch import yaml import torch from torchbenchmark import _list_model_paths, ModelTask, get_metadata_from_yaml from torchbenchmark.util.metadata_utils import skip_by_metadata # Some of the models have very heavyweight setup, so we have to set a very # generous limit. That said, we don't want the entire test suite to hang if # a single test encounters an extreme failure, so we give up after 5 a test # is unresponsive to 5 minutes. (Note: this does not require that the entire # test case completes in 5 minutes. It requires that if the worker is # unresponsive for 5 minutes the parent will presume it dead / incapacitated.) TIMEOUT = 300 # Seconds class TestBenchmark(unittest.TestCase): def setUp(self): gc.collect() def tearDown(self): gc.collect() def test_fx_profile(self): try: from torch.fx.interpreter import Interpreter except ImportError: # older versions of PyTorch raise unittest.SkipTest("Requires torch>=1.8") from fx_profile import main, ProfileAggregate with patch.object(ProfileAggregate, "save") as mock_save: # just run one model to make sure things aren't completely broken main(["--repeat=1", "--filter=pytorch_struct", "--device=cpu"]) self.assertGreaterEqual(mock_save.call_count, 1) def _create_example_model_instance(task: ModelTask, device: str): skip = False try: task.make_model_instance(test="eval", device=device, jit=False) except NotImplementedError: try: task.make_model_instance(test="train", device=device, jit=False) except NotImplementedError: skip = True finally: if skip: raise NotImplementedError(f"Model is not implemented on the device {device}") def _load_test(path, device): def example_fn(self): task = ModelTask(path, timeout=TIMEOUT) with task.watch_cuda_memory(skip=(device != "cuda"), assert_equal=self.assertEqual): try: _create_example_model_instance(task, device) task.check_example() task.del_model_instance() except NotImplementedError: self.skipTest(f'Method `get_module()` on {device} is not implemented, skipping...') def train_fn(self): metadata = get_metadata_from_yaml(path) task = ModelTask(path, timeout=TIMEOUT) with task.watch_cuda_memory(skip=(device != "cuda"), assert_equal=self.assertEqual): try: task.make_model_instance(test="train", device=device, jit=False) task.set_train() task.invoke() task.check_details_train(device=device, md=metadata) task.del_model_instance() except NotImplementedError: self.skipTest(f'Method train on {device} is not implemented, skipping...') def eval_fn(self): metadata = get_metadata_from_yaml(path) task = ModelTask(path, timeout=TIMEOUT) with task.watch_cuda_memory(skip=(device != "cuda"), assert_equal=self.assertEqual): try: task.make_model_instance(test="eval", device=device, jit=False) task.set_eval() task.invoke() task.check_details_eval(device=device, md=metadata) task.check_eval_output() task.del_model_instance() except NotImplementedError: self.skipTest(f'Method eval on {device} is not implemented, skipping...') def check_device_fn(self): task = ModelTask(path, timeout=TIMEOUT) with task.watch_cuda_memory(skip=(device != "cuda"), assert_equal=self.assertEqual): try: task.make_model_instance(test="eval", device=device, jit=False) task.check_device() task.del_model_instance() except NotImplementedError: self.skipTest(f'Method check_device on {device} is not implemented, skipping...') name = os.path.basename(path) metadata = get_metadata_from_yaml(path) for fn, fn_name in zip([example_fn, train_fn, eval_fn, check_device_fn], ["example", "train", "eval", "check_device"]): # set exclude list based on metadata setattr(TestBenchmark, f'test_{name}_{fn_name}_{device}', (unittest.skipIf(skip_by_metadata(test=fn_name, device=device,\ jit=False, extra_args=[], metadata=metadata), "This test is skipped by its metadata")(fn))) def _load_tests(): devices = ['cpu'] if torch.cuda.is_available(): devices.append('cuda') for path in _list_model_paths(): for device in devices: _load_test(path, device) _load_tests() if __name__ == '__main__': unittest.main()