torchbenchmark/e2e.py (37 lines of code) (raw):

import os import pathlib import importlib from dataclasses import dataclass from typing import List, Dict, Any E2E_MODEL_DIR = 'e2e_models' def _list_model_paths() -> List[str]: p = pathlib.Path(__file__).parent.joinpath(E2E_MODEL_DIR) return sorted(str(child.absolute()) for child in p.iterdir() if child.is_dir()) @dataclass class E2EBenchmarkResult: device: str device_num: int test: str num_examples: int batch_size: int result: Dict[str, Any] def load_e2e_model_by_name(model): models = filter(lambda x: model.lower() == x.lower(), map(lambda y: os.path.basename(y), _list_model_paths())) models = list(models) if not models: return None assert len(models) == 1, f"Found more than one models {models} with the exact name: {model}" model_name = models[0] try: module = importlib.import_module(f'torchbenchmark.e2e_models.{model_name}', package=__name__) except ModuleNotFoundError as e: print(f"Warning: Could not find dependent module {e.name} for Model {model_name}, skip it: {e}") return None Model = getattr(module, 'Model', None) if Model is None: print(f"Warning: {module} does not define attribute Model, skip it") return None if not hasattr(Model, 'name'): Model.name = model_name return Model