torchbenchmark/e2e.py (37 lines of code) (raw):
import os
import pathlib
import importlib
from dataclasses import dataclass
from typing import List, Dict, Any
E2E_MODEL_DIR = 'e2e_models'
def _list_model_paths() -> List[str]:
p = pathlib.Path(__file__).parent.joinpath(E2E_MODEL_DIR)
return sorted(str(child.absolute()) for child in p.iterdir() if child.is_dir())
@dataclass
class E2EBenchmarkResult:
device: str
device_num: int
test: str
num_examples: int
batch_size: int
result: Dict[str, Any]
def load_e2e_model_by_name(model):
models = filter(lambda x: model.lower() == x.lower(),
map(lambda y: os.path.basename(y), _list_model_paths()))
models = list(models)
if not models:
return None
assert len(models) == 1, f"Found more than one models {models} with the exact name: {model}"
model_name = models[0]
try:
module = importlib.import_module(f'torchbenchmark.e2e_models.{model_name}', package=__name__)
except ModuleNotFoundError as e:
print(f"Warning: Could not find dependent module {e.name} for Model {model_name}, skip it: {e}")
return None
Model = getattr(module, 'Model', None)
if Model is None:
print(f"Warning: {module} does not define attribute Model, skip it")
return None
if not hasattr(Model, 'name'):
Model.name = model_name
return Model