torchbenchmark/microbenchmarks/nvfuser/__init__.py (120 lines of code) (raw):
from contextlib import contextmanager
from typing import Any, List, Tuple
from torch.testing import make_tensor
import argparse
import random
import torch
import time
# TODO - a lot of this was copied from pytorch/jit/scripts/log_extract.py,
# should we put it somewhere in torch? (and where?)
@contextmanager
def no_fuser(*args, **kwargs):
old_cpu_fuse = torch._C._jit_can_fuse_on_cpu()
old_gpu_fuse = torch._C._jit_can_fuse_on_gpu()
old_texpr_fuser_state = torch._C._jit_texpr_fuser_enabled()
old_nvfuser_state = torch._C._jit_nvfuser_enabled()
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(False)
try:
yield
finally:
torch._C._jit_override_can_fuse_on_cpu(old_cpu_fuse)
torch._C._jit_override_can_fuse_on_gpu(old_gpu_fuse)
torch._C._jit_set_texpr_fuser_enabled(old_texpr_fuser_state)
torch._C._jit_set_nvfuser_enabled(old_nvfuser_state)
def make_tensor_from_type(inp_type: torch._C.TensorType):
if inp_type.requires_grad() is not False:
raise NotImplementedError("Tensors with requires_grad are not implemented")
return make_tensor(
inp_type.sizes(),
dtype=inp_type.dtype(),
device=inp_type.device())
def load_graph_and_inputs(ir: str) -> Tuple[Any, List[Any]]:
graph = torch._C.parse_ir(ir)
graph.makeMultiOutputIntoTuple()
inputs = []
for inp in graph.inputs():
if isinstance(inp.type(), torch._C.FloatType):
inputs.append(random.uniform(.1, 100))
elif isinstance(inp.type(), torch._C.IntType):
inputs.append(random.randint(1, 100))
elif isinstance(inp.type(), torch._C.TensorType):
inputs.append(make_tensor_from_type(inp.type()))
else:
raise NotImplementedError(f"A default value is not implemented for type {inp.type()}")
func = torch._C._create_function_from_graph("forward", graph)
torch._C._jit_pass_erase_shape_information(func.graph)
return (func, inputs)
def time_cuda(fn, inputs, test_runs):
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
torch.cuda.synchronize()
start_event.record()
torch.cuda.synchronize()
for i in range(test_runs):
fn(*inputs)
torch.cuda.synchronize()
end_event.record()
torch.cuda.synchronize()
return start_event.elapsed_time(end_event) / test_runs
def time_cpu(fn, inputs, test_runs):
s = time.perf_counter()
for _ in range(test_runs):
fn(*inputs)
e = time.perf_counter()
return (e - s) / test_runs
def run_test(ir, inputs, *, warmup_runs=10, test_runs=20) -> float:
graph, _ = load_graph_and_inputs(ir)
for _ in range(warmup_runs):
graph(*inputs)
is_cpu = None
for input in inputs:
if isinstance(input, torch.Tensor):
is_cpu = input.device.type == "cpu"
break
assert is_cpu is not None
out = time_cpu(graph, inputs, test_runs) if is_cpu else time_cuda(graph, inputs, test_runs)
return out
def parse_fusers(extra_args: List[str]):
parser = argparse.ArgumentParser()
parser.add_argument(
"--fusers",
nargs="*",
default=[],
choices=["no_fuser", "fuser0", "fuser1", "fuser2"],
help="List of fusers to run tests on")
parser.add_argument("--filters", nargs="*", default=[], help='List of fuser microbenchmarks to test')
args = parser.parse_args(extra_args)
return args
class NVFuserBenchmark():
def __init__(self, name, ir, warmup_runs=10, test_runs=20):
self.name = name
self.ir = ir
self.warmup_runs = warmup_runs
self.test_runs = test_runs
def run_test(self, inputs, fuser_name: str) -> float:
if fuser_name == "no_fuser":
with no_fuser():
return run_test(self.ir, inputs, warmup_runs=self.warmup_runs, test_runs=self.test_runs)
with torch.jit.fuser(fuser_name):
return run_test(self.ir, inputs, warmup_runs=self.warmup_runs, test_runs=self.test_runs)
def get_inputs(self) -> List[Any]:
_, inputs = load_graph_and_inputs(self.ir)
return inputs
def run_nvfuser_microbenchmarks(extra_args: List[str]):
from torchbenchmark.microbenchmarks.nvfuser.ir import ir_list
benchmarks = [NVFuserBenchmark(name, ir) for name, ir in ir_list]
args = parse_fusers(extra_args)
filters, fusers = args.filters, args.fusers
if len(filters) > 0:
benchmarks = [x for x in benchmarks if x.name in filters]
if len(fusers) == 0:
fusers = ["no_fuser", "fuser1", "fuser2"]
for b in benchmarks:
outputs = []
for fuser in fusers:
inputs = b.get_inputs()
outputs.append((fuser, b.run_test(inputs, fuser)))
print(f"{b.name}:", "; ".join(f"{name} = {time:.3f} ms" for name, time in outputs))
def run(args: List[str]):
run_nvfuser_microbenchmarks(extra_args=args)