torchbenchmark/microbenchmarks/nvfuser/__init__.py (120 lines of code) (raw):

from contextlib import contextmanager from typing import Any, List, Tuple from torch.testing import make_tensor import argparse import random import torch import time # TODO - a lot of this was copied from pytorch/jit/scripts/log_extract.py, # should we put it somewhere in torch? (and where?) @contextmanager def no_fuser(*args, **kwargs): old_cpu_fuse = torch._C._jit_can_fuse_on_cpu() old_gpu_fuse = torch._C._jit_can_fuse_on_gpu() old_texpr_fuser_state = torch._C._jit_texpr_fuser_enabled() old_nvfuser_state = torch._C._jit_nvfuser_enabled() torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_gpu(False) torch._C._jit_set_texpr_fuser_enabled(False) torch._C._jit_set_nvfuser_enabled(False) try: yield finally: torch._C._jit_override_can_fuse_on_cpu(old_cpu_fuse) torch._C._jit_override_can_fuse_on_gpu(old_gpu_fuse) torch._C._jit_set_texpr_fuser_enabled(old_texpr_fuser_state) torch._C._jit_set_nvfuser_enabled(old_nvfuser_state) def make_tensor_from_type(inp_type: torch._C.TensorType): if inp_type.requires_grad() is not False: raise NotImplementedError("Tensors with requires_grad are not implemented") return make_tensor( inp_type.sizes(), dtype=inp_type.dtype(), device=inp_type.device()) def load_graph_and_inputs(ir: str) -> Tuple[Any, List[Any]]: graph = torch._C.parse_ir(ir) graph.makeMultiOutputIntoTuple() inputs = [] for inp in graph.inputs(): if isinstance(inp.type(), torch._C.FloatType): inputs.append(random.uniform(.1, 100)) elif isinstance(inp.type(), torch._C.IntType): inputs.append(random.randint(1, 100)) elif isinstance(inp.type(), torch._C.TensorType): inputs.append(make_tensor_from_type(inp.type())) else: raise NotImplementedError(f"A default value is not implemented for type {inp.type()}") func = torch._C._create_function_from_graph("forward", graph) torch._C._jit_pass_erase_shape_information(func.graph) return (func, inputs) def time_cuda(fn, inputs, test_runs): start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) torch.cuda.synchronize() start_event.record() torch.cuda.synchronize() for i in range(test_runs): fn(*inputs) torch.cuda.synchronize() end_event.record() torch.cuda.synchronize() return start_event.elapsed_time(end_event) / test_runs def time_cpu(fn, inputs, test_runs): s = time.perf_counter() for _ in range(test_runs): fn(*inputs) e = time.perf_counter() return (e - s) / test_runs def run_test(ir, inputs, *, warmup_runs=10, test_runs=20) -> float: graph, _ = load_graph_and_inputs(ir) for _ in range(warmup_runs): graph(*inputs) is_cpu = None for input in inputs: if isinstance(input, torch.Tensor): is_cpu = input.device.type == "cpu" break assert is_cpu is not None out = time_cpu(graph, inputs, test_runs) if is_cpu else time_cuda(graph, inputs, test_runs) return out def parse_fusers(extra_args: List[str]): parser = argparse.ArgumentParser() parser.add_argument( "--fusers", nargs="*", default=[], choices=["no_fuser", "fuser0", "fuser1", "fuser2"], help="List of fusers to run tests on") parser.add_argument("--filters", nargs="*", default=[], help='List of fuser microbenchmarks to test') args = parser.parse_args(extra_args) return args class NVFuserBenchmark(): def __init__(self, name, ir, warmup_runs=10, test_runs=20): self.name = name self.ir = ir self.warmup_runs = warmup_runs self.test_runs = test_runs def run_test(self, inputs, fuser_name: str) -> float: if fuser_name == "no_fuser": with no_fuser(): return run_test(self.ir, inputs, warmup_runs=self.warmup_runs, test_runs=self.test_runs) with torch.jit.fuser(fuser_name): return run_test(self.ir, inputs, warmup_runs=self.warmup_runs, test_runs=self.test_runs) def get_inputs(self) -> List[Any]: _, inputs = load_graph_and_inputs(self.ir) return inputs def run_nvfuser_microbenchmarks(extra_args: List[str]): from torchbenchmark.microbenchmarks.nvfuser.ir import ir_list benchmarks = [NVFuserBenchmark(name, ir) for name, ir in ir_list] args = parse_fusers(extra_args) filters, fusers = args.filters, args.fusers if len(filters) > 0: benchmarks = [x for x in benchmarks if x.name in filters] if len(fusers) == 0: fusers = ["no_fuser", "fuser1", "fuser2"] for b in benchmarks: outputs = [] for fuser in fusers: inputs = b.get_inputs() outputs.append((fuser, b.run_test(inputs, fuser))) print(f"{b.name}:", "; ".join(f"{name} = {time:.3f} ms" for name, time in outputs)) def run(args: List[str]): run_nvfuser_microbenchmarks(extra_args=args)