torchbenchmark/models/Background_Matting/networks.py (261 lines of code) (raw):
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import numpy as np
class ResnetConditionHR(nn.Module):
def __init__(self, input_nc, output_nc, ngf=64, nf_part=64,norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks1=7, n_blocks2=3, padding_type='reflect'):
assert(n_blocks1 >= 0); assert(n_blocks2 >= 0)
super(ResnetConditionHR, self).__init__()
self.input_nc = input_nc
self.output_nc = output_nc
self.ngf = ngf
use_bias=True
#main encoder output 256xW/4xH/4
model_enc1 = [nn.ReflectionPad2d(3),nn.Conv2d(input_nc[0], ngf, kernel_size=7, padding=0,bias=use_bias),norm_layer(ngf),nn.ReLU(True)]
model_enc1 += [nn.Conv2d(ngf , ngf * 2, kernel_size=3,stride=2, padding=1, bias=use_bias),norm_layer(ngf * 2),nn.ReLU(True)]
model_enc2 = [nn.Conv2d(ngf*2 , ngf * 4, kernel_size=3,stride=2, padding=1, bias=use_bias),norm_layer(ngf * 4),nn.ReLU(True)]
#back encoder output 256xW/4xH/4
model_enc_back = [nn.ReflectionPad2d(3),nn.Conv2d(input_nc[1], ngf, kernel_size=7, padding=0,bias=use_bias),norm_layer(ngf),nn.ReLU(True)]
n_downsampling = 2
for i in range(n_downsampling):
mult = 2**i
model_enc_back += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3,stride=2, padding=1, bias=use_bias),norm_layer(ngf * mult * 2),nn.ReLU(True)]
#seg encoder output 256xW/4xH/4
model_enc_seg = [nn.ReflectionPad2d(3),nn.Conv2d(input_nc[2], ngf, kernel_size=7, padding=0,bias=use_bias),norm_layer(ngf),nn.ReLU(True)]
n_downsampling = 2
for i in range(n_downsampling):
mult = 2**i
model_enc_seg += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3,stride=2, padding=1, bias=use_bias),norm_layer(ngf * mult * 2),nn.ReLU(True)]
mult = 2**n_downsampling
# #motion encoder output 256xW/4xH/4
model_enc_multi = [nn.ReflectionPad2d(3),nn.Conv2d(input_nc[3], ngf, kernel_size=7, padding=0,bias=use_bias),norm_layer(ngf),nn.ReLU(True)]
n_downsampling = 2
for i in range(n_downsampling):
mult = 2**i
model_enc_multi += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3,stride=2, padding=1, bias=use_bias),norm_layer(ngf * mult * 2),nn.ReLU(True)]
self.model_enc1 = nn.Sequential(*model_enc1)
self.model_enc2 = nn.Sequential(*model_enc2)
self.model_enc_back = nn.Sequential(*model_enc_back)
self.model_enc_seg = nn.Sequential(*model_enc_seg)
self.model_enc_multi = nn.Sequential(*model_enc_multi)
mult = 2**n_downsampling
self.comb_back=nn.Sequential(nn.Conv2d(ngf * mult*2,nf_part,kernel_size=1,stride=1,padding=0,bias=False),norm_layer(ngf),nn.ReLU(True))
self.comb_seg=nn.Sequential(nn.Conv2d(ngf * mult*2,nf_part,kernel_size=1,stride=1,padding=0,bias=False),norm_layer(ngf),nn.ReLU(True))
self.comb_multi=nn.Sequential(nn.Conv2d(ngf * mult*2,nf_part,kernel_size=1,stride=1,padding=0,bias=False),norm_layer(ngf),nn.ReLU(True))
#decoder
model_res_dec=[nn.Conv2d(ngf * mult +3*nf_part,ngf*mult,kernel_size=1,stride=1,padding=0,bias=False),norm_layer(ngf*mult),nn.ReLU(True)]
for i in range(n_blocks1):
model_res_dec += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]
model_res_dec_al=[]
for i in range(n_blocks2):
model_res_dec_al += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]
model_res_dec_fg=[]
for i in range(n_blocks2):
model_res_dec_fg += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]
model_dec_al=[]
for i in range(n_downsampling):
mult = 2**(n_downsampling - i)
#model_dec_al += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),kernel_size=3, stride=2,padding=1, output_padding=1,bias=use_bias),norm_layer(int(ngf * mult / 2)),nn.ReLU(True)]
model_dec_al += [nn.Upsample(scale_factor=2,mode='bilinear',align_corners = True),nn.Conv2d(ngf * mult, int(ngf * mult / 2), 3, stride=1,padding=1),norm_layer(int(ngf * mult / 2)),nn.ReLU(True)]
model_dec_al += [nn.ReflectionPad2d(3),nn.Conv2d(ngf, 1, kernel_size=7, padding=0),nn.Tanh()]
model_dec_fg1=[nn.Upsample(scale_factor=2,mode='bilinear',align_corners = True),nn.Conv2d(ngf * 4, int(ngf * 2), 3, stride=1,padding=1),norm_layer(int(ngf * 2)),nn.ReLU(True)]
model_dec_fg2=[nn.Upsample(scale_factor=2,mode='bilinear',align_corners = True),nn.Conv2d(ngf * 4, ngf, 3, stride=1,padding=1),norm_layer(ngf),nn.ReLU(True),nn.ReflectionPad2d(3),nn.Conv2d(ngf, output_nc-1, kernel_size=7, padding=0)]
self.model_res_dec = nn.Sequential(*model_res_dec)
self.model_res_dec_al=nn.Sequential(*model_res_dec_al)
self.model_res_dec_fg=nn.Sequential(*model_res_dec_fg)
self.model_al_out=nn.Sequential(*model_dec_al)
self.model_dec_fg1=nn.Sequential(*model_dec_fg1)
self.model_fg_out = nn.Sequential(*model_dec_fg2)
def forward(self, image,back,seg,multi):
img_feat1=self.model_enc1(image)
img_feat=self.model_enc2(img_feat1)
back_feat=self.model_enc_back(back)
seg_feat=self.model_enc_seg(seg)
multi_feat=self.model_enc_multi(multi)
oth_feat=torch.cat([self.comb_back(torch.cat([img_feat,back_feat],dim=1)),self.comb_seg(torch.cat([img_feat,seg_feat],dim=1)),self.comb_multi(torch.cat([img_feat,back_feat],dim=1))],dim=1)
out_dec=self.model_res_dec(torch.cat([img_feat,oth_feat],dim=1))
out_dec_al=self.model_res_dec_al(out_dec)
al_out=self.model_al_out(out_dec_al)
out_dec_fg=self.model_res_dec_fg(out_dec)
out_dec_fg1=self.model_dec_fg1(out_dec_fg)
fg_out=self.model_fg_out(torch.cat([out_dec_fg1,img_feat1],dim=1))
return al_out, fg_out
############################## part ##################################
def conv_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.xavier_uniform(m.weight, gain=np.sqrt(2))
#init.normal(m.weight)
if m.bias is not None:
init.constant(m.bias, 0)
if classname.find('Linear') != -1:
init.normal(m.weight)
init.constant(m.bias,1)
if classname.find('BatchNorm2d') != -1:
init.normal(m.weight.data, 1.0, 0.2)
init.constant(m.bias.data, 0.0)
class conv3x3(nn.Module):
'''(conv => BN => ReLU)'''
def __init__(self, in_ch, out_ch):
super(conv3x3, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, stride=2,padding=1),
nn.BatchNorm2d(out_ch),
nn.LeakyReLU(0.2,inplace=True),
)
def forward(self, x):
x = self.conv(x)
return x
class conv3x3s1(nn.Module):
'''(conv => BN => ReLU)'''
def __init__(self, in_ch, out_ch):
super(conv3x3s1, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, stride=1,padding=1),
nn.BatchNorm2d(out_ch),
nn.LeakyReLU(0.2,inplace=True),
)
def forward(self, x):
x = self.conv(x)
return x
class conv1x1(nn.Module):
'''(conv => BN => ReLU)'''
def __init__(self, in_ch, out_ch):
super(conv1x1, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 1, stride=1,padding=0),
nn.BatchNorm2d(out_ch),
nn.LeakyReLU(0.2,inplace=True),
)
def forward(self, x):
x = self.conv(x)
return x
class upconv3x3(nn.Module):
def __init__(self, in_ch, out_ch):
super(upconv3x3, self).__init__()
self.conv = nn.Sequential(
nn.Upsample(scale_factor=2,mode='bilinear'),
nn.Conv2d(in_ch, out_ch, 3, stride=1,padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
)
def forward(self, x):
x=self.conv(x)
return x
class fc(nn.Module):
def __init__(self,in_ch,out_ch):
super(fc,self).__init__()
self.fullc = nn.Sequential(
nn.Linear(in_ch,out_ch),
nn.ReLU(inplace=True),
)
def forward(self,x):
x=self.fullc(x)
return x
# Define a resnet block
class ResnetBlock(nn.Module):
def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias),
norm_layer(dim),
nn.ReLU(True)]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias),
norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return out
##################################### Discriminators ####################################################
class MultiscaleDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d,
use_sigmoid=False, num_D=3, getIntermFeat=False):
super(MultiscaleDiscriminator, self).__init__()
self.num_D = num_D
self.n_layers = n_layers
self.getIntermFeat = getIntermFeat
for i in range(num_D):
netD = NLayerDiscriminator(input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat)
if getIntermFeat:
for j in range(n_layers+2):
setattr(self, 'scale'+str(i)+'_layer'+str(j), getattr(netD, 'model'+str(j)))
else:
setattr(self, 'layer'+str(i), netD.model)
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
def singleD_forward(self, model, input):
if self.getIntermFeat:
result = [input]
for i in range(len(model)):
result.append(model[i](result[-1]))
return result[1:]
else:
return [model(input)]
def forward(self, input):
num_D = self.num_D
result = []
input_downsampled = input
for i in range(num_D):
if self.getIntermFeat:
model = [getattr(self, 'scale'+str(num_D-1-i)+'_layer'+str(j)) for j in range(self.n_layers+2)]
else:
model = getattr(self, 'layer'+str(num_D-1-i))
result.append(self.singleD_forward(model, input_downsampled))
if i != (num_D-1):
input_downsampled = self.downsample(input_downsampled)
return result
# Defines the PatchGAN discriminator with the specified arguments.
class NLayerDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, getIntermFeat=False):
super(NLayerDiscriminator, self).__init__()
self.getIntermFeat = getIntermFeat
self.n_layers = n_layers
kw = 4
padw = int(np.ceil((kw-1.0)/2))
sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]]
nf = ndf
for n in range(1, n_layers):
nf_prev = nf
nf = min(nf * 2, 512)
sequence += [[
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
norm_layer(nf), nn.LeakyReLU(0.2, True)
]]
nf_prev = nf
nf = min(nf * 2, 512)
sequence += [[
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
norm_layer(nf),
nn.LeakyReLU(0.2, True)
]]
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
if use_sigmoid:
sequence += [[nn.Sigmoid()]]
if getIntermFeat:
for n in range(len(sequence)):
setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
else:
sequence_stream = []
for n in range(len(sequence)):
sequence_stream += sequence[n]
self.model = nn.Sequential(*sequence_stream)
def forward(self, input):
if self.getIntermFeat:
res = [input]
for n in range(self.n_layers+2):
model = getattr(self, 'model'+str(n))
res.append(model(res[-1]))
return res[1:]
else:
return self.model(input)