torchbenchmark/models/dlrm/dlrm_data_caffe2.py (411 lines of code) (raw):
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
# Description: generate inputs and targets for the dlrm benchmark
# The inpts and outputs are generated according to the following three option(s)
# 1) random distribution
# 2) synthetic distribution, based on unique accesses and distances between them
# i) R. Hassan, A. Harris, N. Topham and A. Efthymiou "Synthetic Trace-Driven
# Simulation of Cache Memory", IEEE AINAM'07
# 3) public data set
# i) Criteo Kaggle Display Advertising Challenge Dataset
# https://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset
# ii) Criteo Terabyte Dataset
# https://labs.criteo.com/2013/12/download-terabyte-click-logs
from __future__ import absolute_import, division, print_function, unicode_literals
# others
# from os import path
import sys
import bisect
import collections
import data_utils
# numpy
import numpy as np
from numpy import random as ra
# Kaggle Display Advertising Challenge Dataset
# dataset (str): name of dataset (Kaggle or Terabyte)
# randomize (str): determines randomization scheme
# 'none': no randomization
# 'day': randomizes each day's data (only works if split = True)
# 'total': randomizes total dataset
# split (bool) : to split into train, test, validation data-sets
def read_dataset(
dataset,
max_ind_range,
sub_sample_rate,
mini_batch_size,
num_batches,
randomize,
split="train",
raw_data="",
processed_data="",
memory_map=False,
inference_only=False,
):
# split the datafile into path and filename
lstr = raw_data.split("/")
d_path = "/".join(lstr[0:-1]) + "/"
d_file = lstr[-1].split(".")[0] if dataset == "kaggle" else lstr[-1]
# npzfile = d_path + ((d_file + "_day") if dataset == "kaggle" else d_file)
# trafile = d_path + ((d_file + "_fea") if dataset == "kaggle" else "fea")
# load
print("Loading %s dataset..." % dataset)
nbatches = 0
file, days = data_utils.loadDataset(
dataset, max_ind_range, sub_sample_rate, randomize,
split, raw_data, processed_data, memory_map
)
if memory_map:
# WARNING: at this point the data has been reordered and shuffled across files
# e.g. day_<number>_reordered.npz, what remains is simply to read and feed
# the data from each file, going in the order of days file-by-file, to the
# model during training.
sys.exit("ERROR: --memory-map option is not supported for Caffe2 version.")
else:
# load and preprocess data
with np.load(file) as data:
X_int = data["X_int"]
X_cat = data["X_cat"]
y = data["y"]
counts = data["counts"]
# get a number of samples per day
total_file = d_path + d_file + "_day_count.npz"
with np.load(total_file) as data:
total_per_file = data["total_per_file"]
# transform
(X_cat_train, X_int_train, y_train, X_cat_val, X_int_val, y_val,
X_cat_test, X_int_test, y_test) = data_utils.transformCriteoAdData(
X_cat, X_int, y, days, split, randomize, total_per_file
)
ln_emb = counts
m_den = X_int_train.shape[1]
n_emb = len(counts)
print("Sparse features = %d, Dense features = %d" % (n_emb, m_den))
# adjust parameters
def assemble_samples(X_cat, X_int, y, max_ind_range, print_message):
if max_ind_range > 0:
X_cat = X_cat % max_ind_range
nsamples = len(y)
data_size = nsamples
# using floor is equivalent to dropping last mini-batch (drop_last = True)
nbatches = int(np.floor((data_size * 1.0) / mini_batch_size))
print(print_message)
if num_batches != 0 and num_batches < nbatches:
print(
"Limiting to %d batches of the total % d batches"
% (num_batches, nbatches)
)
nbatches = num_batches
else:
print("Total number of batches %d" % nbatches)
# data main loop
lX = []
lS_lengths = []
lS_indices = []
lT = []
for j in range(0, nbatches):
# number of data points in a batch
print("Reading in batch: %d / %d" % (j + 1, nbatches), end="\r")
n = min(mini_batch_size, data_size - (j * mini_batch_size))
# dense feature
idx_start = j * mini_batch_size
lX.append(
(X_int[idx_start : (idx_start + n)]).astype(np.float32)
)
# Targets - outputs
lT.append(
(y[idx_start : idx_start + n])
.reshape(-1, 1)
.astype(np.int32)
)
# sparse feature (sparse indices)
lS_emb_indices = []
# for each embedding generate a list of n lookups,
# where each lookup is composed of multiple sparse indices
for size in range(n_emb):
lS_batch_indices = []
for _b in range(n):
# num of sparse indices to be used per embedding, e.g. for
# store lengths and indices
lS_batch_indices += (
(X_cat[idx_start + _b][size].reshape(-1))
.astype(np.int32)
).tolist()
lS_emb_indices.append(lS_batch_indices)
lS_indices.append(lS_emb_indices)
# Criteo Kaggle data it is 1 because data is categorical
lS_lengths.append(
[(list(np.ones(n).astype(np.int32))) for _ in range(n_emb)]
)
print("\n")
return nbatches, lX, lS_lengths, lS_indices, lT
# adjust training data
(nbatches, lX, lS_lengths, lS_indices, lT) = assemble_samples(
X_cat_train, X_int_train, y_train, max_ind_range, "Training data"
)
# adjust testing data
(nbatches_t, lX_t, lS_lengths_t, lS_indices_t, lT_t) = assemble_samples(
X_cat_test, X_int_test, y_test, max_ind_range, "Testing data"
)
#end if memory_map
return (
nbatches,
lX,
lS_lengths,
lS_indices,
lT,
nbatches_t,
lX_t,
lS_lengths_t,
lS_indices_t,
lT_t,
ln_emb,
m_den,
)
def generate_random_data(
m_den,
ln_emb,
data_size,
num_batches,
mini_batch_size,
num_indices_per_lookup,
num_indices_per_lookup_fixed,
num_targets=1,
round_targets=False,
data_generation="random",
trace_file="",
enable_padding=False,
):
nbatches = int(np.ceil((data_size * 1.0) / mini_batch_size))
if num_batches != 0:
nbatches = num_batches
data_size = nbatches * mini_batch_size
# print("Total number of batches %d" % nbatches)
# inputs and targets
lT = []
lX = []
lS_lengths = []
lS_indices = []
for j in range(0, nbatches):
# number of data points in a batch
n = min(mini_batch_size, data_size - (j * mini_batch_size))
# generate a batch of dense and sparse features
if data_generation == "random":
(Xt, lS_emb_lengths, lS_emb_indices) = generate_uniform_input_batch(
m_den,
ln_emb,
n,
num_indices_per_lookup,
num_indices_per_lookup_fixed
)
elif data_generation == "synthetic":
(Xt, lS_emb_lengths, lS_emb_indices) = generate_synthetic_input_batch(
m_den,
ln_emb,
n,
num_indices_per_lookup,
num_indices_per_lookup_fixed,
trace_file,
enable_padding
)
else:
sys.exit(
"ERROR: --data-generation=" + data_generation + " is not supported"
)
# dense feature
lX.append(Xt)
# sparse feature (sparse indices)
lS_lengths.append(lS_emb_lengths)
lS_indices.append(lS_emb_indices)
# generate a batch of target (probability of a click)
P = generate_random_output_batch(n, num_targets, round_targets)
lT.append(P)
return (nbatches, lX, lS_lengths, lS_indices, lT)
def generate_random_output_batch(n, num_targets=1, round_targets=False):
# target (probability of a click)
if round_targets:
P = np.round(ra.rand(n, num_targets).astype(np.float32)).astype(np.int32)
else:
P = ra.rand(n, num_targets).astype(np.float32)
return P
# uniform ditribution (input data)
def generate_uniform_input_batch(
m_den,
ln_emb,
n,
num_indices_per_lookup,
num_indices_per_lookup_fixed,
):
# dense feature
Xt = ra.rand(n, m_den).astype(np.float32)
# sparse feature (sparse indices)
lS_emb_lengths = []
lS_emb_indices = []
# for each embedding generate a list of n lookups,
# where each lookup is composed of multiple sparse indices
for size in ln_emb:
lS_batch_lengths = []
lS_batch_indices = []
for _ in range(n):
# num of sparse indices to be used per embedding (between
if num_indices_per_lookup_fixed:
sparse_group_size = np.int32(num_indices_per_lookup)
else:
# random between [1,num_indices_per_lookup])
r = ra.random(1)
sparse_group_size = np.int32(
max(1, np.round(r * min(size, num_indices_per_lookup))[0])
)
# sparse indices to be used per embedding
r = ra.random(sparse_group_size)
sparse_group = np.unique(np.round(r * (size - 1)).astype(np.int32))
# reset sparse_group_size in case some index duplicates were removed
sparse_group_size = np.int32(sparse_group.size)
# store lengths and indices
lS_batch_lengths += [sparse_group_size]
lS_batch_indices += sparse_group.tolist()
lS_emb_lengths.append(lS_batch_lengths)
lS_emb_indices.append(lS_batch_indices)
return (Xt, lS_emb_lengths, lS_emb_indices)
# synthetic distribution (input data)
def generate_synthetic_input_batch(
m_den,
ln_emb,
n,
num_indices_per_lookup,
num_indices_per_lookup_fixed,
trace_file,
enable_padding=False,
):
# dense feature
Xt = ra.rand(n, m_den).astype(np.float32)
# sparse feature (sparse indices)
lS_emb_lengths = []
lS_emb_indices = []
# for each embedding generate a list of n lookups,
# where each lookup is composed of multiple sparse indices
for i, size in enumerate(ln_emb):
lS_batch_lengths = []
lS_batch_indices = []
for _ in range(n):
# num of sparse indices to be used per embedding (between
if num_indices_per_lookup_fixed:
sparse_group_size = np.int32(num_indices_per_lookup)
else:
# random between [1,num_indices_per_lookup])
r = ra.random(1)
sparse_group_size = np.int32(
max(1, np.round(r * min(size, num_indices_per_lookup))[0])
)
# sparse indices to be used per embedding
file_path = trace_file
line_accesses, list_sd, cumm_sd = read_dist_from_file(
file_path.replace("j", str(i))
)
# debug print
# print('input')
# print(line_accesses); print(list_sd); print(cumm_sd);
# print(sparse_group_size)
# approach 1: rand
# r = trace_generate_rand(
# line_accesses, list_sd, cumm_sd, sparse_group_size, enable_padding
# )
# approach 2: lru
r = trace_generate_lru(
line_accesses, list_sd, cumm_sd, sparse_group_size, enable_padding
)
# WARNING: if the distribution in the file is not consistent with
# embedding table dimensions, below mod guards against out of
# range access
sparse_group = np.unique(r).astype(np.int32)
minsg = np.min(sparse_group)
maxsg = np.max(sparse_group)
if (minsg < 0) or (size <= maxsg):
print(
"WARNING: distribution is inconsistent with embedding "
+ "table size (using mod to recover and continue)"
)
sparse_group = np.mod(sparse_group, size).astype(np.int32)
# sparse_group = np.unique(np.array(np.mod(r, size-1)).astype(np.int32))
# reset sparse_group_size in case some index duplicates were removed
sparse_group_size = np.int32(sparse_group.size)
# store lengths and indices
lS_batch_lengths += [sparse_group_size]
lS_batch_indices += sparse_group.tolist()
lS_emb_lengths.append(lS_batch_lengths)
lS_emb_indices.append(lS_batch_indices)
return (Xt, lS_emb_lengths, lS_emb_indices)
def generate_stack_distance(cumm_val, cumm_dist, max_i, i, enable_padding=False):
u = ra.rand(1)
if i < max_i:
# only generate stack distances up to the number of new references seen so far
j = bisect.bisect(cumm_val, i) - 1
fi = cumm_dist[j]
u *= fi # shrink distribution support to exclude last values
elif enable_padding:
# WARNING: disable generation of new references (once all have been seen)
fi = cumm_dist[0]
u = (1.0 - fi) * u + fi # remap distribution support to exclude first value
for (j, f) in enumerate(cumm_dist):
if u <= f:
return cumm_val[j]
# WARNING: global define, must be consistent across all synthetic functions
cache_line_size = 1
def trace_generate_lru(
line_accesses, list_sd, cumm_sd, out_trace_len, enable_padding=False
):
max_sd = list_sd[-1]
l = len(line_accesses)
i = 0
ztrace = []
for _ in range(out_trace_len):
sd = generate_stack_distance(list_sd, cumm_sd, max_sd, i, enable_padding)
mem_ref_within_line = 0 # floor(ra.rand(1)*cache_line_size) #0
# generate memory reference
if sd == 0: # new reference #
line_ref = line_accesses.pop(0)
line_accesses.append(line_ref)
mem_ref = np.uint64(line_ref * cache_line_size + mem_ref_within_line)
i += 1
else: # existing reference #
line_ref = line_accesses[l - sd]
mem_ref = np.uint64(line_ref * cache_line_size + mem_ref_within_line)
line_accesses.pop(l - sd)
line_accesses.append(line_ref)
# save generated memory reference
ztrace.append(mem_ref)
return ztrace
def trace_generate_rand(
line_accesses, list_sd, cumm_sd, out_trace_len, enable_padding=False
):
max_sd = list_sd[-1]
l = len(line_accesses) # !!!Unique,
i = 0
ztrace = []
for _ in range(out_trace_len):
sd = generate_stack_distance(list_sd, cumm_sd, max_sd, i, enable_padding)
mem_ref_within_line = 0 # floor(ra.rand(1)*cache_line_size) #0
# generate memory reference
if sd == 0: # new reference #
line_ref = line_accesses.pop(0)
line_accesses.append(line_ref)
mem_ref = np.uint64(line_ref * cache_line_size + mem_ref_within_line)
i += 1
else: # existing reference #
line_ref = line_accesses[l - sd]
mem_ref = np.uint64(line_ref * cache_line_size + mem_ref_within_line)
ztrace.append(mem_ref)
return ztrace
def trace_profile(trace, enable_padding=False):
# number of elements in the array (assuming 1D)
# n = trace.size
rstack = [] # S
stack_distances = [] # SDS
line_accesses = [] # L
for x in trace:
r = np.uint64(x / cache_line_size)
l = len(rstack)
try: # found #
i = rstack.index(r)
# WARNING: I believe below is the correct depth in terms of meaning of the
# algorithm, but that is not what seems to be in the paper alg.
# -1 can be subtracted if we defined the distance between
# consecutive accesses (e.g. r, r) as 0 rather than 1.
sd = l - i # - 1
# push r to the end of stack_distances
stack_distances.insert(0, sd)
# remove r from its position and insert to the top of stack
rstack.pop(i) # rstack.remove(r)
rstack.insert(l - 1, r)
except ValueError: # not found #
sd = 0 # -1
# push r to the end of stack_distances/line_accesses
stack_distances.insert(0, sd)
line_accesses.insert(0, r)
# push r to the top of stack
rstack.insert(l, r)
if enable_padding:
# WARNING: notice that as the ratio between the number of samples (l)
# and cardinality (c) of a sample increases the probability of
# generating a sample gets smaller and smaller because there are
# few new samples compared to repeated samples. This means that for a
# long trace with relatively small cardinality it will take longer to
# generate all new samples and therefore obtain full distribution support
# and hence it takes longer for distribution to resemble the original.
# Therefore, we may pad the number of new samples to be on par with
# average number of samples l/c artificially.
l = len(stack_distances)
c = max(stack_distances)
padding = int(np.ceil(l / c))
stack_distances = stack_distances + [0] * padding
return (rstack, stack_distances, line_accesses)
# auxiliary read/write routines
def read_trace_from_file(file_path):
try:
with open(file_path) as f:
if args.trace_file_binary_type:
array = np.fromfile(f, dtype=np.uint64)
trace = array.astype(np.uint64).tolist()
else:
line = f.readline()
trace = list(map(lambda x: np.uint64(x), line.split(", ")))
return trace
except Exception:
print("ERROR: no input trace file has been provided")
def write_trace_to_file(file_path, trace):
try:
if args.trace_file_binary_type:
with open(file_path, "wb+") as f:
np.array(trace).astype(np.uint64).tofile(f)
else:
with open(file_path, "w+") as f:
s = str(trace)
f.write(s[1 : len(s) - 1])
except Exception:
print("ERROR: no output trace file has been provided")
def read_dist_from_file(file_path):
try:
with open(file_path, "r") as f:
lines = f.read().splitlines()
except Exception:
print("Wrong file or file path")
# read unique accesses
unique_accesses = [int(el) for el in lines[0].split(", ")]
# read cumulative distribution (elements are passed as two separate lists)
list_sd = [int(el) for el in lines[1].split(", ")]
cumm_sd = [float(el) for el in lines[2].split(", ")]
return unique_accesses, list_sd, cumm_sd
def write_dist_to_file(file_path, unique_accesses, list_sd, cumm_sd):
try:
with open(file_path, "w") as f:
# unique_acesses
s = str(unique_accesses)
f.write(s[1 : len(s) - 1] + "\n")
# list_sd
s = str(list_sd)
f.write(s[1 : len(s) - 1] + "\n")
# cumm_sd
s = str(cumm_sd)
f.write(s[1 : len(s) - 1] + "\n")
except Exception:
print("Wrong file or file path")
if __name__ == "__main__":
import sys
import operator
import argparse
### parse arguments ###
parser = argparse.ArgumentParser(description="Generate Synthetic Distributions")
parser.add_argument("--trace-file", type=str, default="./input/trace.log")
parser.add_argument("--trace-file-binary-type", type=bool, default=False)
parser.add_argument("--trace-enable-padding", type=bool, default=False)
parser.add_argument("--dist-file", type=str, default="./input/dist.log")
parser.add_argument(
"--synthetic-file", type=str, default="./input/trace_synthetic.log"
)
parser.add_argument("--numpy-rand-seed", type=int, default=123)
parser.add_argument("--print-precision", type=int, default=5)
args = parser.parse_args()
### some basic setup ###
np.random.seed(args.numpy_rand_seed)
np.set_printoptions(precision=args.print_precision)
### read trace ###
trace = read_trace_from_file(args.trace_file)
# print(trace)
### profile trace ###
(_, stack_distances, line_accesses) = trace_profile(
trace, args.trace_enable_padding
)
stack_distances.reverse()
line_accesses.reverse()
# print(line_accesses)
# print(stack_distances)
### compute probability distribution ###
# count items
l = len(stack_distances)
dc = sorted(
collections.Counter(stack_distances).items(), key=operator.itemgetter(0)
)
# create a distribution
list_sd = list(map(lambda tuple_x_k: tuple_x_k[0], dc)) # x = tuple_x_k[0]
dist_sd = list(
map(lambda tuple_x_k: tuple_x_k[1] / float(l), dc)
) # k = tuple_x_k[1]
cumm_sd = [] # np.cumsum(dc).tolist() #prefixsum
for i, (_, k) in enumerate(dc):
if i == 0:
cumm_sd.append(k / float(l))
else:
# add the 2nd element of the i-th tuple in the dist_sd list
cumm_sd.append(cumm_sd[i - 1] + (k / float(l)))
### write stack_distance and line_accesses to a file ###
write_dist_to_file(args.dist_file, line_accesses, list_sd, cumm_sd)
### generate correspondinf synthetic ###
# line_accesses, list_sd, cumm_sd = read_dist_from_file(args.dist_file)
synthetic_trace = trace_generate_lru(
line_accesses, list_sd, cumm_sd, len(trace), args.trace_enable_padding
)
# synthetic_trace = trace_generate_rand(
# line_accesses, list_sd, cumm_sd, len(trace), args.trace_enable_padding
# )
write_trace_to_file(args.synthetic_file, synthetic_trace)