torchbenchmark/models/tacotron2/utils.py (26 lines of code) (raw):
import numpy as np
from scipy.io.wavfile import read
import torch
from pathlib import Path
def get_mask_from_lengths(lengths):
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len, device=lengths.device)
mask = (ids < lengths.unsqueeze(1)).bool()
return mask
def load_wav_to_torch(full_path):
sampling_rate, data = read(full_path)
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
def load_filepaths_and_text(filename, split="|"):
root = str(Path(__file__).parent)
with open(filename, encoding='utf-8') as f:
filepaths_and_text = []
for line in f:
filename, *text = line.strip().split(split)
filename = f'{root}/{filename}'
filepaths_and_text.append((filename, *text))
return filepaths_and_text
def to_gpu(x):
x = x.contiguous()
if torch.cuda.is_available():
x = x.cuda(non_blocking=True)
return torch.autograd.Variable(x)