torchbenchmark/models/tacotron2/utils.py (26 lines of code) (raw):

import numpy as np from scipy.io.wavfile import read import torch from pathlib import Path def get_mask_from_lengths(lengths): max_len = torch.max(lengths).item() ids = torch.arange(0, max_len, device=lengths.device) mask = (ids < lengths.unsqueeze(1)).bool() return mask def load_wav_to_torch(full_path): sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(filename, split="|"): root = str(Path(__file__).parent) with open(filename, encoding='utf-8') as f: filepaths_and_text = [] for line in f: filename, *text = line.strip().split(split) filename = f'{root}/{filename}' filepaths_and_text.append((filename, *text)) return filepaths_and_text def to_gpu(x): x = x.contiguous() if torch.cuda.is_available(): x = x.cuda(non_blocking=True) return torch.autograd.Variable(x)