import torch
from pycocotools import mask as coco_mask
from torchvision.transforms import functional as F

def convert_coco_poly_to_mask(segmentations, height, width):
    masks = []
    for polygons in segmentations:
        rles = coco_mask.frPyObjects(polygons, height, width)
        mask = coco_mask.decode(rles)
        if len(mask.shape) < 3:
            mask = mask[..., None]
        mask = torch.as_tensor(mask, dtype=torch.uint8)
        mask = mask.any(dim=2)
        masks.append(mask)
    if masks:
        masks = torch.stack(masks, dim=0)
    else:
        masks = torch.zeros((0, height, width), dtype=torch.uint8)
    return masks

class ConvertCocoPolysToMask:
    def __call__(self, image, target):
        w, h = image.size

        image_id = target[0]["image_id"] if target else []
        image_id = torch.tensor([image_id])

        anno = target

        anno = [obj for obj in anno if obj["iscrowd"] == 0]

        boxes = [obj["bbox"] for obj in anno]
        # guard against no boxes via resizing
        boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
        boxes[:, 2:] += boxes[:, :2]
        boxes[:, 0::2].clamp_(min=0, max=w)
        boxes[:, 1::2].clamp_(min=0, max=h)

        classes = [obj["category_id"] for obj in anno]
        classes = torch.tensor(classes, dtype=torch.int64)

        segmentations = [obj["segmentation"] for obj in anno]
        masks = convert_coco_poly_to_mask(segmentations, h, w)

        keypoints = None
        if anno and "keypoints" in anno[0]:
            keypoints = [obj["keypoints"] for obj in anno]
            keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
            num_keypoints = keypoints.shape[0]
            if num_keypoints:
                keypoints = keypoints.view(num_keypoints, -1, 3)

        keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
        boxes = boxes[keep]
        classes = classes[keep]
        masks = masks[keep]
        if keypoints is not None:
            keypoints = keypoints[keep]

        target = {}
        target["boxes"] = boxes
        target["labels"] = classes
        target["masks"] = masks
        target["image_id"] = image_id
        if keypoints is not None:
            target["keypoints"] = keypoints

        # for conversion to coco api
        area = torch.tensor([obj["area"] for obj in anno])
        iscrowd = torch.tensor([obj["iscrowd"] for obj in anno])
        target["area"] = area
        target["iscrowd"] = iscrowd

        # Convert image from PIL to tensor
        image = F.pil_to_tensor(image)
        image = F.convert_image_dtype(image)
        return image, target
