import argparse

import torch.distributed as dist
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.tensorboard import SummaryWriter

from .test import test  # import test.py to get mAP after each epoch
from .yolo_models import *
from .yolo_utils.datasets import *
from .yolo_utils.utils import *
from .yolo_utils.parse_config import parse_data_cfg
from pathlib import Path

def print(*args):
    pass

def _prefetch_loader(loader, size, fields=[], collate_fn=lambda x: x):
    result = []
    for index, item in enumerate(loader):
        litem = list(item)
        for f in fields:
            litem[f] = collate_fn(litem[f])
        result.append(tuple(litem))
        if index == size:
            break
    return result

def prepare_training_loop(args):
    mixed_precision = False

    wdir = 'weights' + os.sep  # weights dir
    last = wdir + 'last.pt'
    best = wdir + 'best.pt'
    results_file = 'results.txt'

    # Hyperparameters
    hyp = {'giou': 3.54,  # giou loss gain
        'cls': 37.4,  # cls loss gain
        'cls_pw': 1.0,  # cls BCELoss positive_weight
        'obj': 64.3,  # obj loss gain (*=img_size/320 if img_size != 320)
        'obj_pw': 1.0,  # obj BCELoss positive_weight
        'iou_t': 0.20,  # iou training threshold
        'lr0': 0.01,  # initial learning rate (SGD=5E-3, Adam=5E-4)
        'lrf': 0.0005,  # final learning rate (with cos scheduler)
        'momentum': 0.937,  # SGD momentum
        'weight_decay': 0.0005,  # optimizer weight decay
        'fl_gamma': 0.0,  # focal loss gamma (efficientDet default is gamma=1.5)
        'hsv_h': 0.0138,  # image HSV-Hue augmentation (fraction)
        'hsv_s': 0.678,  # image HSV-Saturation augmentation (fraction)
        'hsv_v': 0.36,  # image HSV-Value augmentation (fraction)
        'degrees': 1.98 * 0,  # image rotation (+/- deg)
        'translate': 0.05 * 0,  # image translation (+/- fraction)
        'scale': 0.05 * 0,  # image scale (+/- gain)
        'shear': 0.641 * 0}  # image shear (+/- deg)

    # Overwrite hyp with hyp*.txt (optional)
    f = glob.glob('hyp*.txt')
    if f:
        print('Using %s' % f[0])
        for k, v in zip(hyp.keys(), np.loadtxt(f[0])):
            hyp[k] = v

    # Print focal loss if gamma > 0
    if hyp['fl_gamma']:
        print('Using FocalLoss(gamma=%g)' % hyp['fl_gamma'])

    def get_train(hyp):
        cfg = opt.cfg
        data = opt.data
        epochs = opt.epochs  # 500200 batches at bs 64, 117263 images = 273 epochs
        batch_size = opt.batch_size
        accumulate = max(round(64 / batch_size), 1)  # accumulate n times before optimizer update (bs 64)
        weights = opt.weights  # initial training weights
        imgsz_min, imgsz_max, imgsz_test = opt.img_size  # img sizes (min, max, test)

        # Image Sizes
        gs = 32  # (pixels) grid size
        assert math.fmod(imgsz_min, gs) == 0, '--img-size %g must be a %g-multiple' % (imgsz_min, gs)
        opt.multi_scale |= imgsz_min != imgsz_max  # multi if different (min, max)
        if opt.multi_scale:
            if imgsz_min == imgsz_max:
                imgsz_min //= 1.5
                imgsz_max //= 0.667
            grid_min, grid_max = imgsz_min // gs, imgsz_max // gs
            imgsz_min, imgsz_max = int(grid_min * gs), int(grid_max * gs)
        img_size = imgsz_max  # initialize with max size

        # Configure run
        # do not init seeds because it is already initialized in __init__.py
        # init_seeds(0)
        data_dict = parse_data_cfg(data)
        train_path = os.path.dirname(__file__) + '/' + data_dict['train']
        test_path = os.path.dirname(__file__) + '/' + data_dict['valid']
        print(train_path)
        nc = 1 if opt.single_cls else int(data_dict['classes'])  # number of classes
        hyp['cls'] *= nc / 80  # update coco-tuned hyp['cls'] to current dataset

        # Remove previous results
        for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
            os.remove(f)

        # Initialize model
        model = Darknet(cfg).to(device)

        # Optimizer
        pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
        for k, v in dict(model.named_parameters()).items():
            if '.bias' in k:
                pg2 += [v]  # biases
            elif 'Conv2d.weight' in k:
                pg1 += [v]  # apply weight_decay
            else:
                pg0 += [v]  # all else

        if opt.adam:
            # hyp['lr0'] *= 0.1  # reduce lr (i.e. SGD=5E-3, Adam=5E-4)
            optimizer = optim.Adam(pg0, lr=hyp['lr0'])
            # optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
        else:
            optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
        optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
        optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
        print('Optimizer groups: %g .bias, %g Conv2d.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
        del pg0, pg1, pg2

        start_epoch = 0
        best_fitness = 0.0
        attempt_download(weights)
        if weights.endswith('.pt'):  # pytorch format
            # possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
            ckpt = torch.load(weights, map_location=device)

            # load model
            try:
                ckpt['model'] = {k: v for k, v in ckpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
                model.load_state_dict(ckpt['model'], strict=False)
            except KeyError as e:
                s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
                    "See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
                raise KeyError(s) from e

            # load optimizer
            if ckpt['optimizer'] is not None:
                optimizer.load_state_dict(ckpt['optimizer'])
                best_fitness = ckpt['best_fitness']

            # load results
            # if ckpt.get('training_results') is not None:
            #     with open(results_file, 'w') as file:
            #         file.write(ckpt['training_results'])  # write results.txt

            # epochs
            start_epoch = ckpt['epoch'] + 1
            if epochs < start_epoch:
                print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                    (opt.weights, ckpt['epoch'], epochs))
                epochs += ckpt['epoch']  # finetune additional epochs

            del ckpt

        elif len(weights) > 0:  # darknet format
            # possible weights are '*.weights', 'yolov3-tiny.conv.15',  'darknet53.conv.74' etc.
            load_darknet_weights(model, weights)

        if opt.freeze_layers:
            output_layer_indices = [idx - 1 for idx, module in enumerate(model.module_list) if isinstance(module, YOLOLayer)]
            freeze_layer_indices = [x for x in range(len(model.module_list)) if
                                    (x not in output_layer_indices) and
                                    (x - 1 not in output_layer_indices)]
            for idx in freeze_layer_indices:
                for parameter in model.module_list[idx].parameters():
                    parameter.requires_grad_(False)

        # Mixed precision training https://github.com/NVIDIA/apex
        if mixed_precision:
            model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)

        # Scheduler https://arxiv.org/pdf/1812.01187.pdf
        lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.95 + 0.05  # cosine
        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
        scheduler.last_epoch = start_epoch - 1  # see link below
        # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822

        # Plot lr schedule
        # y = []
        # for _ in range(epochs):
        #     scheduler.step()
        #     y.append(optimizer.param_groups[0]['lr'])
        # plt.plot(y, '.-', label='LambdaLR')
        # plt.xlabel('epoch')
        # plt.ylabel('LR')
        # plt.tight_layout()
        # plt.savefig('LR.png', dpi=300)

        # Initialize distributed training
        # if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
        #     dist.init_process_group(backend='nccl',  # 'distributed backend'
        #                             init_method='tcp://127.0.0.1:9999',  # distributed training init method
        #                             world_size=1,  # number of nodes for distributed training
        #                             rank=0)  # distributed training node rank
        #     model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
        #     model.yolo_layers = model.module.yolo_layers  # move yolo layer indices to top level

        # Dataset
        dataset = LoadImagesAndLabels(train_path, img_size, batch_size,
                                    augment=True,
                                    hyp=hyp,  # augmentation hyperparameters
                                    rect=opt.rect,  # rectangular training
                                    cache_images=opt.cache_images,
                                    single_cls=opt.single_cls)

        # Dataloader
        batch_size = min(batch_size, len(dataset))
        nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
        dataloader = torch.utils.data.DataLoader(dataset,
                                                batch_size=batch_size,
                                                num_workers=nw,
                                                shuffle=not opt.rect,  # Shuffle=True unless rectangular training is used
                                                pin_memory=True,
                                                collate_fn=dataset.collate_fn)

        # Testloader
        testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, imgsz_test, batch_size,
                                                                    hyp=hyp,
                                                                    rect=True,
                                                                    cache_images=opt.cache_images,
                                                                    single_cls=opt.single_cls),
                                                batch_size=batch_size,
                                                num_workers=nw,
                                                pin_memory=True,
                                                collate_fn=dataset.collate_fn)

        # TorchBench: prefetch the dataloader
        if opt.prefetch:
            dataloader = _prefetch_loader(dataloader, size=opt.train_num_batch*batch_size, 
                                          fields=[0, 1],
                                          collate_fn=lambda x: x.to(device) if isinstance(x, torch.Tensor) else x)

        # Model parameters
        model.nc = nc  # attach number of classes to model
        model.hyp = hyp  # attach hyperparameters to model
        model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
        model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights

        # Model EMA
        ema = torch_utils.ModelEMA(model)

        def train_loop(epochs):
            epoch = 0
            nonlocal img_size, best_fitness
            # Start training
            nb = len(dataloader)  # number of batches
            n_burn = max(3 * nb, 500)  # burn-in iterations, max(3 epochs, 500 iterations)
            maps = np.zeros(nc)  # mAP per class
            # torch.autograd.set_detect_anomaly(True)
            results = (0, 0, 0, 0, 0, 0, 0)  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
            t0 = time.time()
            # print('Image sizes %g - %g train, %g test' % (imgsz_min, imgsz_max, imgsz_test))
            # print('Using %g dataloader workers' % nw)
            # print('Starting training for %g epochs...' % epochs)
            for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
                model.train()

                # Update image weights (optional)
                if dataset.image_weights:
                    w = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weights
                    image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
                    dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n)  # rand weighted idx

                mloss = torch.zeros(4).to(device)  # mean losses
                # print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
                # pbar = tqdm(zip(range(opt.train_num_batch), dataloader), total=nb)  # progress bar
                pbar = zip(range(opt.train_num_batch), dataloader)
                for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
                    if i > 3:
                        break
                    ni = i + nb * epoch  # number integrated batches (since train start)
                    imgs = imgs.to(device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0
                    targets = targets.to(device)

                    # Burn-in
                    if ni <= n_burn:
                        xi = [0, n_burn]  # x interp
                        model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                        accumulate = max(1, np.interp(ni, xi, [1, 64 / batch_size]).round())
                        for j, x in enumerate(optimizer.param_groups):
                            # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                            x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                            x['weight_decay'] = np.interp(ni, xi, [0.0, hyp['weight_decay'] if j == 1 else 0.0])
                            if 'momentum' in x:
                                x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])

                    # Multi-Scale
                    if opt.multi_scale:
                        if ni / accumulate % 1 == 0:  #  adjust img_size (67% - 150%) every 1 batch
                            img_size = random.randrange(grid_min, grid_max + 1) * gs
                        sf = img_size / max(imgs.shape[2:])  # scale factor
                        if sf != 1:
                            ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to 32-multiple)
                            imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

                    # Forward
                    pred = model(imgs)

                    # Loss
                    loss, loss_items = compute_loss(pred, targets, model)
                    if not torch.isfinite(loss):
                        print('WARNING: non-finite loss, ending training ', loss_items)
                        return results

                    # Backward
                    loss *= batch_size / 64  # scale loss
                    if mixed_precision:
                        with amp.scale_loss(loss, optimizer) as scaled_loss:
                            scaled_loss.backward()
                    else:
                        loss.backward()

                    # Optimize
                    if ni % accumulate == 0:
                        optimizer.step()
                        optimizer.zero_grad()
                        ema.update(model)

                    # Print
                    mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                    mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                    s = ('%10s' * 2 + '%10.3g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem, *mloss, len(targets), img_size)
                    # pbar.set_description(s)

                    # Plot
                    if ni < 1:
                        f = 'train_batch%g.jpg' % i  # filename
                        # TorchBench: do not write result jpg
                        # res = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                        # if tb_writer:
                            # tb_writer.add_image(f, res, dataformats='HWC', global_step=epoch)
                            # tb_writer.add_graph(model, imgs)  # add model to tensorboard

                    # end batch ------------------------------------------------------------------------------------------------

                # Update scheduler
                scheduler.step()
                # Process epoch results
                ema.update_attr(model)
                final_epoch = epoch + 1 == epochs
                # if not opt.notest or final_epoch:  # Calculate mAP
                #     is_coco = any([x in data for x in ['coco.data', 'coco2014.data', 'coco2017.data']]) and model.nc == 80
                #     results, maps = test(cfg,
                #                             data,
                #                             batch_size=batch_size,
                #                             imgsz=imgsz_test,
                #                             model=ema.ema,
                #                             save_json=final_epoch and is_coco,
                #                             single_cls=opt.single_cls,
                #                             dataloader=testloader,
                #                             multi_label=ni > n_burn)

                # Write
                # with open(results_file, 'a') as f:
                #     f.write(s + '%10.3g' * 7 % results + '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
                if len(opt.name) and opt.bucket:
                    os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))

                # Tensorboard
                if tb_writer:
                    tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                            'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
                            'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
                    for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                        tb_writer.add_scalar(tag, x, epoch)

                # Update best mAP
                fi = fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
                if fi > best_fitness:
                    best_fitness = fi

                # Save model
                save = (not opt.nosave) or (final_epoch and not opt.evolve)
                # TorchBench: do not save the result
                save = False
                if save:
                    with open(results_file, 'r') as f:  # create checkpoint
                        ckpt = {'epoch': epoch,
                                'best_fitness': best_fitness,
                                'training_results': f.read(),
                                'model': ema.ema.module.state_dict() if hasattr(model, 'module') else ema.ema.state_dict(),
                                'optimizer': None if final_epoch else optimizer.state_dict()}

                    # Save last, best and delete
                    # torch.save(ckpt, last)
                    # if (best_fitness == fi) and not final_epoch:
                    #     torch.save(ckpt, best)
                    del ckpt

                # end epoch ----------------------------------------------------------------------------------------------------
            # end training

            n = opt.name
            if len(n):
                n = '_' + n if not n.isnumeric() else n
                fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
                for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
                    if os.path.exists(f1):
                        os.rename(f1, f2)  # rename
                        ispt = f2.endswith('.pt')  # is *.pt
                        strip_optimizer(f2) if ispt else None  # strip optimizer
                        os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None  # upload

            # if not opt.evolve:
            #     plot_results()  # save as results.png
            # print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
            # dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
            torch.cuda.empty_cache()
            return results
        return train_loop, model, dataloader

    root = str(Path(__file__).parent.resolve())
    parser = argparse.ArgumentParser()
    parser.add_argument('--epochs', type=int, default=300)  # 500200 batches at bs 16, 117263 COCO images = 273 epochs
    parser.add_argument('--batch-size', type=int, default=16)  # effective bs = batch_size * accumulate = 16 * 4 = 64
    parser.add_argument('--cfg', type=str, default=f'{root}/cfg/yolov3-spp.cfg', help='*.cfg path')
    parser.add_argument('--data', type=str, default=f'{root}/data/coco2017.data', help='*.data path')
    parser.add_argument('--multi-scale', action='store_true', help='adjust (67%% - 150%%) img_size every 10 batches')
    parser.add_argument('--img-size', nargs='+', type=int, default=[320, 640], help='[min_train, max-train, test]')
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument('--notest', action='store_true', help='only test final epoch')
    parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
    parser.add_argument('--weights', type=str, default='weights/yolov3-spp-ultralytics.pt', help='initial weights path')
    parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
    parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1 or cpu)')
    parser.add_argument('--adam', action='store_true', help='use adam optimizer')
    parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
    parser.add_argument('--freeze-layers', action='store_true', help='Freeze non-output layers')
    # Extra args added by TorchBench
    parser.add_argument('--train-num-batch', type=int, default=1, help='Number of batches to run')
    parser.add_argument('--prefetch', action='store_true', help='Whether to prefetch dataloader')
    opt = parser.parse_args(args)

    opt.weights = last if opt.resume else opt.weights
    # check_git_status()
    opt.cfg = check_file(opt.cfg)  # check file
    print(opt.data)
    opt.data = check_file(opt.data)  # check file
    opt.img_size.extend([opt.img_size[-1]] * (3 - len(opt.img_size)))  # extend to 3 sizes (min, max, test)
    device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
    if device.type == 'cpu':
        mixed_precision = False

    # scale hyp['obj'] by img_size (evolved at 320)
    # hyp['obj'] *= opt.img_size[0] / 320.

    tb_writer = None
    if not opt.evolve:  # Train normally
        # print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
        # tb_writer = SummaryWriter(comment=opt.name)
        return get_train(hyp)  # train normally
    else:  # Evolve hyperparameters (optional)
        opt.notest, opt.nosave = True, True  # only test/save final epoch
        if opt.bucket:
            os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists

        for _ in range(1):  # generations to evolve
            if os.path.exists('evolve.txt'):  # if evolve.txt exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt('evolve.txt', ndmin=2)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min()  # weights
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                method, mp, s = 3, 0.9, 0.2  # method, mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1])  # gains
                ng = len(g)
                if method == 1:
                    v = (npr.randn(ng) * npr.random() * g * s + 1) ** 2.0
                elif method == 2:
                    v = (npr.randn(ng) * npr.random(ng) * g * s + 1) ** 2.0
                elif method == 3:
                    v = np.ones(ng)
                    while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                        # v = (g * (npr.random(ng) < mp) * npr.randn(ng) * s + 1) ** 2.0
                        v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = x[i + 7] * v[i]  # mutate

            # Clip to limits
            keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
            limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
            for k, v in zip(keys, limits):
                hyp[k] = np.clip(hyp[k], v[0], v[1])

            # Train mutation
            results = train(hyp.copy())

            # Write mutation results
            print_mutation(hyp, results, opt.bucket)

            # Plot results
            # plot_evolution_results(hyp)
