botorch/models/gp_regression_fidelity.py [97:114]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            )
        with torch.no_grad():
            transformed_X = self.transform_inputs(
                X=train_X, input_transform=input_transform
            )

        self._set_dimensions(train_X=transformed_X, train_Y=train_Y)
        covar_module, subset_batch_dict = _setup_multifidelity_covar_module(
            dim=transformed_X.size(-1),
            aug_batch_shape=self._aug_batch_shape,
            iteration_fidelity=iteration_fidelity,
            data_fidelity=data_fidelity,
            linear_truncated=linear_truncated,
            nu=nu,
        )
        super().__init__(
            train_X=train_X,
            train_Y=train_Y,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



botorch/models/gp_regression_fidelity.py [207:223]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            )
        with torch.no_grad():
            transformed_X = self.transform_inputs(
                X=train_X, input_transform=input_transform
            )
        self._set_dimensions(train_X=transformed_X, train_Y=train_Y)
        covar_module, subset_batch_dict = _setup_multifidelity_covar_module(
            dim=transformed_X.size(-1),
            aug_batch_shape=self._aug_batch_shape,
            iteration_fidelity=iteration_fidelity,
            data_fidelity=data_fidelity,
            linear_truncated=linear_truncated,
            nu=nu,
        )
        super().__init__(
            train_X=train_X,
            train_Y=train_Y,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



