in website/pages/en/index.js [81:277]
render() {
const {config: siteConfig, language = ''} = this.props;
const {baseUrl} = siteConfig;
const Block = props => (
<Container
padding={['bottom', 'top']}
id={props.id}
background={props.background}>
<GridBlock
align="center"
contents={props.children}
layout={props.layout}
/>
</Container>
);
const Description = () => (
<Block background="light">
{[
{
content:
'This is another description of how this project is useful',
image: `${baseUrl}img/captum-icon.png`,
imageAlign: 'right',
title: 'Description',
},
]}
</Block>
);
// getStartedSection
const pre = '```';
// Example for model fitting
const createModelExample = `${pre}python
import numpy as np
import torch
import torch.nn as nn
from captum.attr import IntegratedGradients
class ToyModel(nn.Module):
def __init__(self):
super().__init__()
self.lin1 = nn.Linear(3, 3)
self.relu = nn.ReLU()
self.lin2 = nn.Linear(3, 2)
# initialize weights and biases
self.lin1.weight = nn.Parameter(torch.arange(-4.0, 5.0).view(3, 3))
self.lin1.bias = nn.Parameter(torch.zeros(1,3))
self.lin2.weight = nn.Parameter(torch.arange(-3.0, 3.0).view(2, 3))
self.lin2.bias = nn.Parameter(torch.ones(1,2))
def forward(self, input):
return self.lin2(self.relu(self.lin1(input)))
model = ToyModel()
model.eval()
`;
// Example for defining an acquisition function
const defineInputBaseline = `${pre}python
input = torch.rand(2, 3)
baseline = torch.zeros(2, 3)
`;
const randomSeedsDefinition = `${pre}python
torch.manual_seed(123)
np.random.seed(123)
`;
// Example for optimizing candidates
const instantiateApply = `${pre}python
ig = IntegratedGradients(model)
attributions, delta = ig.attribute(input, baseline, target=0, return_convergence_delta=True)
print('IG Attributions:', attributions)
print('Convergence Delta:', delta)
`;
const igOutput = `${pre}python
IG Attributions: tensor([[-0.5922, -1.5497, -1.0067],
[ 0.0000, -0.2219, -5.1991]])
Convergence Delta: tensor([2.3842e-07, -4.7684e-07])
`;
//
const QuickStart = () => (
<div
className="productShowcaseSection"
id="quickstart"
style={{textAlign: 'center'}}>
<h2>Get Started</h2>
<Container>
<ol>
<li>
<h4>Install Captum:</h4>
<a>via conda (recommended):</a>
<MarkdownBlock>{bash`conda install captum -c pytorch`}</MarkdownBlock>
<a>via pip:</a>
<MarkdownBlock>{bash`pip install captum`}</MarkdownBlock>
</li>
<li>
<h4>Create and prepare model:</h4>
<MarkdownBlock>{createModelExample}</MarkdownBlock>
</li>
<li>
<h4>To make computations deterministic, let's fix random seeds:</h4>
<MarkdownBlock>{randomSeedsDefinition}</MarkdownBlock>
</li>
<li>
<h4>Define input and baseline tensors:</h4>
<MarkdownBlock>{defineInputBaseline}</MarkdownBlock>
</li>
<li>
<h4>Select algorithm to instantiate and apply (Integrated Gradients in this example):</h4>
<MarkdownBlock>{instantiateApply}</MarkdownBlock>
</li>
<li>
<h4>View Output:</h4>
<MarkdownBlock>{igOutput}</MarkdownBlock>
</li>
</ol>
</Container>
</div>
);
const Features = () => (
<div className="productShowcaseSection" style={{textAlign: 'center'}}>
<h2>Key Features</h2>
<Block layout="threeColumn">
{[
{
content:
'Supports interpretability of models across modalities including vision, text, and more.',
image: `${baseUrl}img/multi-modal.png`,
imageAlign: 'top',
title: 'Multi-Modal',
},
{
content:
'Supports most types of PyTorch models and can be used with minimal modification to the original neural network.',
image: `${baseUrl}img/pytorch_logo.svg`,
imageAlign: 'top',
title: 'Built on PyTorch',
},
{
content:
'Open source, generic library for interpretability research. Easily implement and benchmark new algorithms. ',
image: `${baseUrl}img/expanding_arrows.svg`,
imageAlign: 'top',
title: 'Extensible',
},
]}
</Block>
</div>
);
const Showcase = () => {
if ((siteConfig.users || []).length === 0) {
return null;
}
const showcase = siteConfig.users
.filter(user => user.pinned)
.map(user => (
<a href={user.infoLink} key={user.infoLink}>
<img src={user.image} alt={user.caption} title={user.caption} />
</a>
));
const pageUrl = page => baseUrl + (language ? `${language}/` : '') + page;
return (
<div className="productShowcaseSection paddingBottom">
<h2>Who is Using This?</h2>
<p>This project is used by all these people</p>
<div className="logos">{showcase}</div>
<div className="more-users">
<a className="button" href={pageUrl('users.html')}>
More {siteConfig.title} Users
</a>
</div>
</div>
);
};
return (
<div>
<SocialBanner />
<HomeSplash siteConfig={siteConfig} language={language} />
<div className="landingPage mainContainer">
<VideoContainer />
<Features />
<QuickStart />
</div>
</div>
);
}