in captum/attr/_utils/lrp_rules.py [0:0]
def backward_hook_activation(module, grad_input, grad_output):
"""Backward hook to propagate relevance over non-linear activations."""
if (
isinstance(grad_input, tuple)
and isinstance(grad_output, tuple)
and len(grad_input) > len(grad_output)
):
# Adds any additional elements of grad_input if applicable
# This occurs when registering a backward hook on nn.Dropout
# modules, which has an additional element of None in
# grad_input
return grad_output + grad_input[len(grad_output) :]
return grad_output