in cpp/mnist/mnist.cpp [115:154]
auto main() -> int {
torch::manual_seed(1);
torch::DeviceType device_type;
if (torch::cuda::is_available()) {
std::cout << "CUDA available! Training on GPU." << std::endl;
device_type = torch::kCUDA;
} else {
std::cout << "Training on CPU." << std::endl;
device_type = torch::kCPU;
}
torch::Device device(device_type);
Net model;
model.to(device);
auto train_dataset = torch::data::datasets::MNIST(kDataRoot)
.map(torch::data::transforms::Normalize<>(0.1307, 0.3081))
.map(torch::data::transforms::Stack<>());
const size_t train_dataset_size = train_dataset.size().value();
auto train_loader =
torch::data::make_data_loader<torch::data::samplers::SequentialSampler>(
std::move(train_dataset), kTrainBatchSize);
auto test_dataset = torch::data::datasets::MNIST(
kDataRoot, torch::data::datasets::MNIST::Mode::kTest)
.map(torch::data::transforms::Normalize<>(0.1307, 0.3081))
.map(torch::data::transforms::Stack<>());
const size_t test_dataset_size = test_dataset.size().value();
auto test_loader =
torch::data::make_data_loader(std::move(test_dataset), kTestBatchSize);
torch::optim::SGD optimizer(
model.parameters(), torch::optim::SGDOptions(0.01).momentum(0.5));
for (size_t epoch = 1; epoch <= kNumberOfEpochs; ++epoch) {
train(epoch, model, device, *train_loader, optimizer, train_dataset_size);
test(model, device, *test_loader, test_dataset_size);
}
}