def __init__()

in python/lltm.py [0:0]


    def __init__(self, input_features, state_size):
        super(LLTM, self).__init__()
        self.input_features = input_features
        self.state_size = state_size
        # 3 * state_size for input gate, output gate and candidate cell gate.
        # input_features + state_size because we will multiply with [input, h].
        self.weights = torch.nn.Parameter(
            torch.Tensor(3 * state_size, input_features + state_size))
        self.bias = torch.nn.Parameter(torch.Tensor(1, 3 * state_size))
        self.reset_parameters()