fairseq/models/speech_to_text/s2t_transformer.py [385:421]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def reorder_encoder_out(self, encoder_out, new_order):
        new_encoder_out = (
            []
            if len(encoder_out["encoder_out"]) == 0
            else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]]
        )

        new_encoder_padding_mask = (
            []
            if len(encoder_out["encoder_padding_mask"]) == 0
            else [
                x.index_select(0, new_order)
                for x in encoder_out["encoder_padding_mask"]
            ]
        )

        new_encoder_embedding = (
            []
            if len(encoder_out["encoder_embedding"]) == 0
            else [
                x.index_select(0, new_order) for x in encoder_out["encoder_embedding"]
            ]
        )

        encoder_states = encoder_out["encoder_states"]
        if len(encoder_states) > 0:
            for idx, state in enumerate(encoder_states):
                encoder_states[idx] = state.index_select(1, new_order)

        return {
            "encoder_out": new_encoder_out,  # T x B x C
            "encoder_padding_mask": new_encoder_padding_mask,  # B x T
            "encoder_embedding": new_encoder_embedding,  # B x T x C
            "encoder_states": encoder_states,  # List[T x B x C]
            "src_tokens": [],  # B x T
            "src_lengths": [],  # B x 1
        }
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



fairseq/models/speech_to_text/xm_transformer.py [326:362]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def reorder_encoder_out(self, encoder_out, new_order):
        new_encoder_out = (
            []
            if len(encoder_out["encoder_out"]) == 0
            else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]]
        )

        new_encoder_padding_mask = (
            []
            if len(encoder_out["encoder_padding_mask"]) == 0
            else [
                x.index_select(0, new_order)
                for x in encoder_out["encoder_padding_mask"]
            ]
        )

        new_encoder_embedding = (
            []
            if len(encoder_out["encoder_embedding"]) == 0
            else [
                x.index_select(0, new_order) for x in encoder_out["encoder_embedding"]
            ]
        )

        encoder_states = encoder_out["encoder_states"]
        if len(encoder_states) > 0:
            for idx, state in enumerate(encoder_states):
                encoder_states[idx] = state.index_select(1, new_order)

        return {
            "encoder_out": new_encoder_out,  # T x B x C
            "encoder_padding_mask": new_encoder_padding_mask,  # B x T
            "encoder_embedding": new_encoder_embedding,  # B x T x C
            "encoder_states": encoder_states,  # List[T x B x C]
            "src_tokens": [],  # B x T
            "src_lengths": [],  # B x 1
        }
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



