fairseq/models/speech_to_speech/s2s_transformer.py [248:313]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    @staticmethod
    def add_args(parser):
        # input
        parser.add_argument(
            "--conv-kernel-sizes",
            type=str,
            metavar="N",
            help="kernel sizes of Conv1d subsampling layers",
        )
        parser.add_argument(
            "--conv-channels",
            type=int,
            metavar="N",
            help="# of channels in Conv1d subsampling layers",
        )
        # Transformer
        parser.add_argument(
            "--activation-fn",
            type=str,
            default="relu",
            choices=utils.get_available_activation_fns(),
            help="activation function to use",
        )
        parser.add_argument(
            "--dropout", type=float, metavar="D", help="dropout probability"
        )
        parser.add_argument(
            "--attention-dropout",
            type=float,
            metavar="D",
            help="dropout probability for attention weights",
        )
        parser.add_argument(
            "--activation-dropout",
            "--relu-dropout",
            type=float,
            metavar="D",
            help="dropout probability after activation in FFN.",
        )
        parser.add_argument(
            "--encoder-embed-dim",
            type=int,
            metavar="N",
            help="encoder embedding dimension",
        )
        parser.add_argument(
            "--encoder-ffn-embed-dim",
            type=int,
            metavar="N",
            help="encoder embedding dimension for FFN",
        )
        parser.add_argument(
            "--encoder-layers", type=int, metavar="N", help="num encoder layers"
        )
        parser.add_argument(
            "--encoder-attention-heads",
            type=int,
            metavar="N",
            help="num encoder attention heads",
        )
        parser.add_argument(
            "--encoder-normalize-before",
            action="store_true",
            help="apply layernorm before each encoder block",
        )
        parser.add_argument(
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



fairseq/models/speech_to_speech/s2s_transformer.py [423:488]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    @staticmethod
    def add_args(parser):
        # input
        parser.add_argument(
            "--conv-kernel-sizes",
            type=str,
            metavar="N",
            help="kernel sizes of Conv1d subsampling layers",
        )
        parser.add_argument(
            "--conv-channels",
            type=int,
            metavar="N",
            help="# of channels in Conv1d subsampling layers",
        )
        # Transformer
        parser.add_argument(
            "--activation-fn",
            type=str,
            default="relu",
            choices=utils.get_available_activation_fns(),
            help="activation function to use",
        )
        parser.add_argument(
            "--dropout", type=float, metavar="D", help="dropout probability"
        )
        parser.add_argument(
            "--attention-dropout",
            type=float,
            metavar="D",
            help="dropout probability for attention weights",
        )
        parser.add_argument(
            "--activation-dropout",
            "--relu-dropout",
            type=float,
            metavar="D",
            help="dropout probability after activation in FFN.",
        )
        parser.add_argument(
            "--encoder-embed-dim",
            type=int,
            metavar="N",
            help="encoder embedding dimension",
        )
        parser.add_argument(
            "--encoder-ffn-embed-dim",
            type=int,
            metavar="N",
            help="encoder embedding dimension for FFN",
        )
        parser.add_argument(
            "--encoder-layers", type=int, metavar="N", help="num encoder layers"
        )
        parser.add_argument(
            "--encoder-attention-heads",
            type=int,
            metavar="N",
            help="num encoder attention heads",
        )
        parser.add_argument(
            "--encoder-normalize-before",
            action="store_true",
            help="apply layernorm before each encoder block",
        )
        parser.add_argument(
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



