def load_dataset()

in fairseq/tasks/multilingual_masked_lm.py [0:0]


    def load_dataset(self, split, epoch=1, combine=False, **kwargs):
        """Load a given dataset split.

        Args:
            split (str): name of the split (e.g., train, valid, test)
        """
        paths = utils.split_paths(self.args.data)
        assert len(paths) > 0
        data_path = paths[(epoch - 1) % len(paths)]

        languages = sorted(
            name
            for name in os.listdir(data_path)
            if os.path.isdir(os.path.join(data_path, name))
        )

        logger.info("Training on {0} languages: {1}".format(len(languages), languages))
        logger.info(
            "Language to id mapping: ", {lang: id for id, lang in enumerate(languages)}
        )

        mask_whole_words = self._get_whole_word_mask()
        lang_datasets = []
        for lang_id, language in enumerate(languages):
            split_path = os.path.join(data_path, language, split)

            dataset = data_utils.load_indexed_dataset(
                split_path,
                self.source_dictionary,
                self.args.dataset_impl,
                combine=combine,
            )
            if dataset is None:
                raise FileNotFoundError(
                    "Dataset not found: {} ({})".format(split, split_path)
                )

            # create continuous blocks of tokens
            dataset = TokenBlockDataset(
                dataset,
                dataset.sizes,
                self.args.tokens_per_sample - 1,  # one less for <s>
                pad=self.source_dictionary.pad(),
                eos=self.source_dictionary.eos(),
                break_mode=self.args.sample_break_mode,
            )
            logger.info("loaded {} blocks from: {}".format(len(dataset), split_path))

            # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
            dataset = PrependTokenDataset(dataset, self.source_dictionary.bos())

            src_dataset, tgt_dataset = MaskTokensDataset.apply_mask(
                dataset,
                self.source_dictionary,
                pad_idx=self.source_dictionary.pad(),
                mask_idx=self.mask_idx,
                seed=self.args.seed,
                mask_prob=self.args.mask_prob,
                leave_unmasked_prob=self.args.leave_unmasked_prob,
                random_token_prob=self.args.random_token_prob,
                freq_weighted_replacement=self.args.freq_weighted_replacement,
                mask_whole_words=mask_whole_words,
            )

            lang_dataset = NestedDictionaryDataset(
                {
                    "net_input": {
                        "src_tokens": PadDataset(
                            src_dataset,
                            pad_idx=self.source_dictionary.pad(),
                            left_pad=False,
                        ),
                        "src_lengths": NumelDataset(src_dataset, reduce=False),
                    },
                    "target": PadDataset(
                        tgt_dataset,
                        pad_idx=self.source_dictionary.pad(),
                        left_pad=False,
                    ),
                    "nsentences": NumSamplesDataset(),
                    "ntokens": NumelDataset(src_dataset, reduce=True),
                    "lang_id": RawLabelDataset([lang_id] * src_dataset.sizes.shape[0]),
                },
                sizes=[src_dataset.sizes],
            )
            lang_datasets.append(lang_dataset)

        dataset_lengths = np.array(
            [len(d) for d in lang_datasets],
            dtype=float,
        )
        logger.info(
            "loaded total {} blocks for all languages".format(
                dataset_lengths.sum(),
            )
        )
        if split == self.args.train_subset:
            # For train subset, additionally up or down sample languages.
            sample_probs = self._get_sample_prob(dataset_lengths)
            logger.info(
                "Sample probability by language: ",
                {
                    lang: "{0:.4f}".format(sample_probs[id])
                    for id, lang in enumerate(languages)
                },
            )
            size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths
            logger.info(
                "Up/Down Sampling ratio by language: ",
                {
                    lang: "{0:.2f}".format(size_ratio[id])
                    for id, lang in enumerate(languages)
                },
            )

            resampled_lang_datasets = [
                ResamplingDataset(
                    lang_datasets[i],
                    size_ratio=size_ratio[i],
                    seed=self.args.seed,
                    epoch=epoch,
                    replace=size_ratio[i] >= 1.0,
                )
                for i, d in enumerate(lang_datasets)
            ]
            dataset = ConcatDataset(resampled_lang_datasets)
        else:
            dataset = ConcatDataset(lang_datasets)
            lang_splits = [split]
            for lang_id, lang_dataset in enumerate(lang_datasets):
                split_name = split + "_" + languages[lang_id]
                lang_splits.append(split_name)
                self.datasets[split_name] = lang_dataset

            # [TODO]: This is hacky for now to print validation ppl for each
            # language individually. Maybe need task API changes to allow it
            # in more generic ways.
            if split in self.args.valid_subset:
                self.args.valid_subset = self.args.valid_subset.replace(
                    split, ",".join(lang_splits)
                )

        with data_utils.numpy_seed(self.args.seed + epoch):
            shuffle = np.random.permutation(len(dataset))

        self.datasets[split] = SortDataset(
            dataset,
            sort_order=[
                shuffle,
                dataset.sizes,
            ],
        )