in fairseq/models/lightconv.py [0:0]
def add_args(parser):
"""Add model-specific arguments to the parser."""
parser.add_argument(
"--dropout", type=float, metavar="D", help="dropout probability"
)
parser.add_argument(
"--attention-dropout",
type=float,
metavar="D",
help="dropout probability for attention weights",
)
parser.add_argument(
"--relu-dropout",
type=float,
metavar="D",
help="dropout probability after ReLU in FFN",
)
parser.add_argument(
"--input-dropout",
type=float,
metavar="D",
help="dropout probability of the inputs",
)
parser.add_argument(
"--encoder-embed-path",
type=str,
metavar="STR",
help="path to pre-trained encoder embedding",
)
parser.add_argument(
"--encoder-embed-dim",
type=int,
metavar="N",
help="encoder embedding dimension",
)
parser.add_argument(
"--encoder-conv-dim",
type=int,
metavar="N",
help="encoder embedding dimension",
)
parser.add_argument(
"--encoder-ffn-embed-dim",
type=int,
metavar="N",
help="encoder embedding dimension for FFN",
)
parser.add_argument(
"--encoder-layers", type=int, metavar="N", help="num encoder layers"
)
parser.add_argument(
"--encoder-attention-heads",
type=int,
metavar="N",
help="num encoder attention heads or LightConv/DynamicConv heads",
)
parser.add_argument(
"--encoder-normalize-before",
action="store_true",
help="apply layernorm before each encoder block",
)
parser.add_argument(
"--encoder-learned-pos",
action="store_true",
help="use learned positional embeddings in the encoder",
)
parser.add_argument(
"--decoder-embed-path",
type=str,
metavar="STR",
help="path to pre-trained decoder embedding",
)
parser.add_argument(
"--decoder-embed-dim",
type=int,
metavar="N",
help="decoder embedding dimension",
)
parser.add_argument(
"--decoder-conv-dim",
type=int,
metavar="N",
help="decoder embedding dimension",
)
parser.add_argument(
"--decoder-ffn-embed-dim",
type=int,
metavar="N",
help="decoder embedding dimension for FFN",
)
parser.add_argument(
"--decoder-layers", type=int, metavar="N", help="num decoder layers"
)
parser.add_argument(
"--decoder-attention-heads",
type=int,
metavar="N",
help="num decoder attention heads or LightConv/DynamicConv heads",
)
parser.add_argument(
"--decoder-learned-pos",
action="store_true",
help="use learned positional embeddings in the decoder",
)
parser.add_argument(
"--decoder-normalize-before",
action="store_true",
help="apply layernorm before each decoder block",
)
parser.add_argument(
"--share-decoder-input-output-embed",
action="store_true",
help="share decoder input and output embeddings",
)
parser.add_argument(
"--share-all-embeddings",
action="store_true",
help="share encoder, decoder and output embeddings"
" (requires shared dictionary and embed dim)",
)
parser.add_argument(
"--adaptive-softmax-cutoff",
metavar="EXPR",
help="comma separated list of adaptive softmax cutoff points. "
"Must be used with adaptive_loss criterion",
),
parser.add_argument(
"--adaptive-softmax-dropout",
type=float,
metavar="D",
help="sets adaptive softmax dropout for the tail projections",
)
"""LightConv and DynamicConv arguments"""
parser.add_argument(
"--encoder-kernel-size-list",
type=lambda x: utils.eval_str_list(x, int),
help='list of kernel size (default: "[3,7,15,31,31,31,31]")',
)
parser.add_argument(
"--decoder-kernel-size-list",
type=lambda x: utils.eval_str_list(x, int),
help='list of kernel size (default: "[3,7,15,31,31,31]")',
)
parser.add_argument(
"--encoder-glu", type=utils.eval_bool, help="glu after in proj"
)
parser.add_argument(
"--decoder-glu", type=utils.eval_bool, help="glu after in proj"
)
parser.add_argument(
"--encoder-conv-type",
default="dynamic",
type=str,
choices=["dynamic", "lightweight"],
help="type of convolution",
)
parser.add_argument(
"--decoder-conv-type",
default="dynamic",
type=str,
choices=["dynamic", "lightweight"],
help="type of convolution",
)
parser.add_argument("--weight-softmax", default=True, type=utils.eval_bool)
parser.add_argument(
"--weight-dropout",
type=float,
metavar="D",
help="dropout probability for conv weights",
)