def test()

in torchnet/engine/engine.py [0:0]


    def test(self, network, iterator):
        state = {
            'network': network,
            'iterator': iterator,
            't': 0,
            'train': False,
        }

        self.hook('on_start', state)
        for sample in state['iterator']:
            state['sample'] = sample
            self.hook('on_sample', state)

            def closure():
                loss, output = state['network'](state['sample'])
                state['output'] = output
                state['loss'] = loss
                self.hook('on_forward', state)
                # to free memory in save_for_backward
                state['output'] = None
                state['loss'] = None

            closure()
            state['t'] += 1
        self.hook('on_end', state)
        return state