in torchnet/engine/engine.py [0:0]
def test(self, network, iterator):
state = {
'network': network,
'iterator': iterator,
't': 0,
'train': False,
}
self.hook('on_start', state)
for sample in state['iterator']:
state['sample'] = sample
self.hook('on_sample', state)
def closure():
loss, output = state['network'](state['sample'])
state['output'] = output
state['loss'] = loss
self.hook('on_forward', state)
# to free memory in save_for_backward
state['output'] = None
state['loss'] = None
closure()
state['t'] += 1
self.hook('on_end', state)
return state