def add()

in torchnet/meter/averagevaluemeter.py [0:0]


    def add(self, value, n=1):
        self.val = value
        self.sum += value * n
        if n <= 0:
            raise ValueError("Cannot use a non-positive weight for the running stat.")
        elif self.n == 0:
            self.mean = 0.0 + value  # This is to force a copy in torch/numpy
            self.std = np.inf
            self.mean_old = self.mean
            self.m_s = 0.0
        else:
            self.mean = self.mean_old + n * (value - self.mean_old) / float(self.n + n)
            self.m_s += n * (value - self.mean_old) * (value - self.mean)
            self.mean_old = self.mean
            self.std = np.sqrt(self.m_s / (self.n + n - 1.0))
        self.var = self.std ** 2

        self.n += n