in torchnet/logger/meterlogger.py [0:0]
def __addmeter(self, meter):
if meter == 'accuracy':
self.meter[meter] = tnt.meter.ClassErrorMeter(topk=(1, self.topk), accuracy=True)
self.__addlogger(meter, 'line')
elif meter == 'map':
self.meter[meter] = tnt.meter.mAPMeter()
self.__addlogger(meter, 'line')
elif meter == 'auc':
self.meter[meter] = tnt.meter.AUCMeter()
self.__addlogger(meter, 'line')
elif meter == 'confusion':
self.meter[meter] = tnt.meter.ConfusionMeter(self.nclass, normalized=True)
self.__addlogger(meter, 'heatmap')