def update_meter()

in torchnet/logger/meterlogger.py [0:0]


    def update_meter(self, output, target, meters={'accuracy'}):
        output = self.__to_tensor(output)
        target = self.__to_tensor(target)
        for meter in meters:
            if meter not in self.meter.keys():
                self.__addmeter(meter)
            if meter in ['ap', 'map', 'confusion']:
                target_th = self._ver2tensor(target)
                self.meter[meter].add(output, target_th)
            else:
                self.meter[meter].add(output, target)