in torchnet/dataset/shuffledataset.py [0:0]
def __init__(self, dataset, size=None, replacement=False):
if size and not replacement and size > len(dataset):
raise ValueError('size cannot be larger than underlying dataset \
size when sampling without replacement')
super(ShuffleDataset, self).__init__(dataset,
lambda dataset, idx: self.perm[idx],
size)
self.replacement = replacement
self.resample()