def __init__()

in torchnet/dataset/shuffledataset.py [0:0]


    def __init__(self, dataset, size=None, replacement=False):
        if size and not replacement and size > len(dataset):
            raise ValueError('size cannot be larger than underlying dataset \
                    size when sampling without replacement')

        super(ShuffleDataset, self).__init__(dataset,
                                             lambda dataset, idx: self.perm[idx],
                                             size)
        self.replacement = replacement
        self.resample()