def add()

in torchnet/meter/classerrormeter.py [0:0]


    def add(self, output, target):
        if torch.is_tensor(output):
            output = output.cpu().squeeze().numpy()
        if torch.is_tensor(target):
            target = np.atleast_1d(target.cpu().squeeze().numpy())
        elif isinstance(target, numbers.Number):
            target = np.asarray([target])
        if np.ndim(output) == 1:
            output = output[np.newaxis]
        else:
            assert np.ndim(output) == 2, \
                'wrong output size (1D or 2D expected)'
            assert np.ndim(target) == 1, \
                'target and output do not match'
        assert target.shape[0] == output.shape[0], \
            'target and output do not match'
        topk = self.topk
        maxk = int(topk[-1])  # seems like Python3 wants int and not np.int64
        no = output.shape[0]

        pred = torch.from_numpy(output).topk(maxk, 1, True, True)[1].numpy()
        correct = pred == target[:, np.newaxis].repeat(pred.shape[1], 1)

        for k in topk:
            self.sum[k] += no - correct[:, 0:k].sum()
        self.n += no