in pytorch_translate/dual_learning/dual_learning_task.py [0:0]
def add_args(parser):
PytorchTranslateTask.add_args(parser)
"""Add semi-supervised arguments to the parser."""
parser.add_argument(
"--dual-criterion",
default="unsupervised_criterion",
help="Criterion for jointly train primal and dual models",
)
parser.add_argument(
"--reward-alpha",
type=float,
default=0.005,
help="Hyperparam to weigh two rewards",
)
parser.add_argument(
"--soft-updates",
type=int,
metavar="N",
default=15000,
help="Number of updates before training with mono",
)
parser.add_argument(
"--forward-train-source-binary-path",
default="",
metavar="FILE",
help="Path for the binary file containing source training "
"examples for forward model.",
)
parser.add_argument(
"--forward-train-target-binary-path",
default="",
metavar="FILE",
help="Path for the binary file containing target training "
"examples for forward model.",
)
parser.add_argument(
"--forward-eval-source-binary-path",
default="",
metavar="FILE",
help="Path for the binary file containing source valid "
"examples for forward model.",
)
parser.add_argument(
"--forward-eval-target-binary-path",
default="",
metavar="FILE",
help="Path for the binary file containing target training "
"examples for forward model.",
)
parser.add_argument(
"--backward-train-source-binary-path",
default="",
metavar="FILE",
help="Path for the binary file containing source training "
"examples for backward model.",
)
parser.add_argument(
"--backward-train-target-binary-path",
default="",
metavar="FILE",
help="Path for the binary file containing target training "
"examples for backward model.",
)
parser.add_argument(
"--backward-eval-source-binary-path",
default="",
metavar="FILE",
help="Path for the binary file containing source valid "
"examples for backward model.",
)
parser.add_argument(
"--backward-eval-target-binary-path",
default="",
metavar="FILE",
help="Path for the binary file containing target training "
"examples for backward model.",
)
parser.add_argument(
"--remove-eos-at-src", action="store_true", help="If True, remove eos"
)
parser.add_argument(
"--pretrained-forward-checkpoint",
default="",
help="Load pretrained forward model",
)
parser.add_argument(
"--pretrained-backward-checkpoint",
default="",
help="Load pretrained backward model",
)
parser.add_argument(
"--reconstruction-bleu-order",
default=2,
help="BLEU score order to use as reward for reconstruction",
)