in pytorch_translate/char_encoder.py [0:0]
def add_args(parser):
parser.add_argument(
"--char-embed-dim",
type=int,
default=128,
metavar="N",
help=("Character embedding dimension."),
)
parser.add_argument(
"--char-rnn-units",
type=int,
default=256,
metavar="N",
help=("Number of units for Character LSTM."),
)
parser.add_argument(
"--char-rnn-layers",
type=int,
default=1,
metavar="N",
help=("Number of Character LSTM layers."),
)
parser.add_argument(
"--char-cnn-params",
type=str,
metavar="EXPR",
help=("String experission, [(dim, kernel_size), ...]."),
)
parser.add_argument(
"--char-cnn-nonlinear-fn",
type=str,
default="tanh",
metavar="EXPR",
help=("Nonlinearity applied to char conv outputs. Values: relu, tanh."),
)
parser.add_argument(
"--char-cnn-num-highway-layers",
type=int,
default=0,
metavar="N",
help=("Char cnn encoder highway layers."),
)
parser.add_argument(
"--char-cnn-output-dim",
type=int,
default=-1,
metavar="N",
help="Output dim of the CNN layer. If set to -1, this is computed "
"from char-cnn-params.",
)
parser.add_argument(
"--use-pretrained-weights",
type=utils.bool_flag,
nargs="?",
const=True,
default=False,
help="Use pretrained weights for the character model including "
"the char embeddings, CNN filters, highway networks",
)
parser.add_argument(
"--finetune-pretrained-weights",
type=utils.bool_flag,
nargs="?",
const=True,
default=False,
help="Boolean flag to specify whether or not to update the "
"pretrained weights as part of training",
)
parser.add_argument(
"--pretrained-weights-file",
type=str,
default="",
help=("Weights file for loading pretrained weights"),
)
parser.add_argument(
"--unk-only-char-encoding",
type=utils.bool_flag,
nargs="?",
const=True,
default=False,
help=(
"Boolean flag. When True, taking words embeddings"
"for in-vocab tokens and char encoder's outputs for oov tokens"
"When False, concatenating words embeddings and char encoder's outputs"
"for all tokens."
),
)