in pytorch_translate/train.py [0:0]
def set_default_args(args):
# Prevents generate from printing individual translated sentences when
# calculating BLEU score.
args.quiet = True
# Set default init method for multi-GPU training if the user didn't specify
# them.
if args.distributed_world_size > 1:
args.distributed_init_method = (
f"tcp://localhost:{random.randint(10000, 20000)}"
if not args.distributed_init_method
else args.distributed_init_method
)
if args.local_num_gpus > args.distributed_world_size:
raise ValueError(
f"--local-num-gpus={args.local_num_gpus} must be "
f"<= --distributed-world-size={args.distributed_world_size}."
)
if args.local_num_gpus > torch.cuda.device_count():
raise ValueError(
f"--local-num-gpus={args.local_num_gpus} must be "
f"<= the number of GPUs: {torch.cuda.device_count()}."
)
if args.fp16 and getattr(args, "adversary", False):
print(
"Warning: disabling fp16 training since it's not supported by AdversarialTrainer."
)
args.fp16 = False
if not args.source_vocab_file:
args.source_vocab_file = pytorch_translate_dictionary.default_dictionary_path(
save_dir=args.save_dir, dialect=args.source_lang
)
if not args.target_vocab_file:
args.target_vocab_file = pytorch_translate_dictionary.default_dictionary_path(
save_dir=args.save_dir, dialect=args.target_lang
)
if args.arch in constants.ARCHS_FOR_CHAR_SOURCE and not args.char_source_vocab_file:
args.char_source_vocab_file = (
pytorch_translate_dictionary.default_char_dictionary_path(
save_dir=args.save_dir, dialect=args.source_lang
)
)
if args.arch in constants.ARCHS_FOR_CHAR_TARGET and not args.char_target_vocab_file:
args.char_target_vocab_file = (
pytorch_translate_dictionary.default_char_dictionary_path(
save_dir=args.save_dir, dialect=args.target_lang
)
)
if args.multiling_encoder_lang and not args.multiling_source_vocab_file:
args.multiling_source_vocab_file = [
pytorch_translate_dictionary.default_dictionary_path(
save_dir=args.save_dir, dialect=f"src-{l}"
)
for l in args.multiling_encoder_lang
]
if args.multiling_decoder_lang and not args.multiling_target_vocab_file:
args.multiling_target_vocab_file = [
pytorch_translate_dictionary.default_dictionary_path(
save_dir=args.save_dir, dialect=f"trg-{l}"
)
for l in args.multiling_decoder_lang
]