def train_cifar()

in beginner_source/hyperparameter_tuning_tutorial.py [0:0]


def train_cifar(config, checkpoint_dir=None, data_dir=None):
    net = Net(config["l1"], config["l2"])

    device = "cpu"
    if torch.cuda.is_available():
        device = "cuda:0"
        if torch.cuda.device_count() > 1:
            net = nn.DataParallel(net)
    net.to(device)

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=config["lr"], momentum=0.9)

    if checkpoint_dir:
        model_state, optimizer_state = torch.load(
            os.path.join(checkpoint_dir, "checkpoint"))
        net.load_state_dict(model_state)
        optimizer.load_state_dict(optimizer_state)

    trainset, testset = load_data(data_dir)

    test_abs = int(len(trainset) * 0.8)
    train_subset, val_subset = random_split(
        trainset, [test_abs, len(trainset) - test_abs])

    trainloader = torch.utils.data.DataLoader(
        train_subset,
        batch_size=int(config["batch_size"]),
        shuffle=True,
        num_workers=8)
    valloader = torch.utils.data.DataLoader(
        val_subset,
        batch_size=int(config["batch_size"]),
        shuffle=True,
        num_workers=8)

    for epoch in range(10):  # loop over the dataset multiple times
        running_loss = 0.0
        epoch_steps = 0
        for i, data in enumerate(trainloader, 0):
            # get the inputs; data is a list of [inputs, labels]
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)

            # zero the parameter gradients
            optimizer.zero_grad()

            # forward + backward + optimize
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()
            epoch_steps += 1
            if i % 2000 == 1999:  # print every 2000 mini-batches
                print("[%d, %5d] loss: %.3f" % (epoch + 1, i + 1,
                                                running_loss / epoch_steps))
                running_loss = 0.0

        # Validation loss
        val_loss = 0.0
        val_steps = 0
        total = 0
        correct = 0
        for i, data in enumerate(valloader, 0):
            with torch.no_grad():
                inputs, labels = data
                inputs, labels = inputs.to(device), labels.to(device)

                outputs = net(inputs)
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()

                loss = criterion(outputs, labels)
                val_loss += loss.cpu().numpy()
                val_steps += 1

        with tune.checkpoint_dir(epoch) as checkpoint_dir:
            path = os.path.join(checkpoint_dir, "checkpoint")
            torch.save((net.state_dict(), optimizer.state_dict()), path)

        tune.report(loss=(val_loss / val_steps), accuracy=correct / total)
    print("Finished Training")