def main()

in references/classification/train.py [0:0]


def main(args):
    if args.prototype and prototype is None:
        raise ImportError("The prototype module couldn't be found. Please install the latest torchvision nightly.")
    if not args.prototype and args.weights:
        raise ValueError("The weights parameter works only in prototype mode. Please pass the --prototype argument.")
    if args.output_dir:
        utils.mkdir(args.output_dir)

    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

    if args.use_deterministic_algorithms:
        torch.backends.cudnn.benchmark = False
        torch.use_deterministic_algorithms(True)
    else:
        torch.backends.cudnn.benchmark = True

    train_dir = os.path.join(args.data_path, "train")
    val_dir = os.path.join(args.data_path, "val")
    dataset, dataset_test, train_sampler, test_sampler = load_data(train_dir, val_dir, args)

    collate_fn = None
    num_classes = len(dataset.classes)
    mixup_transforms = []
    if args.mixup_alpha > 0.0:
        mixup_transforms.append(transforms.RandomMixup(num_classes, p=1.0, alpha=args.mixup_alpha))
    if args.cutmix_alpha > 0.0:
        mixup_transforms.append(transforms.RandomCutmix(num_classes, p=1.0, alpha=args.cutmix_alpha))
    if mixup_transforms:
        mixupcutmix = torchvision.transforms.RandomChoice(mixup_transforms)
        collate_fn = lambda batch: mixupcutmix(*default_collate(batch))  # noqa: E731
    data_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.batch_size,
        sampler=train_sampler,
        num_workers=args.workers,
        pin_memory=True,
        collate_fn=collate_fn,
    )
    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=args.batch_size, sampler=test_sampler, num_workers=args.workers, pin_memory=True
    )

    print("Creating model")
    if not args.prototype:
        model = torchvision.models.__dict__[args.model](pretrained=args.pretrained, num_classes=num_classes)
    else:
        model = prototype.models.__dict__[args.model](weights=args.weights, num_classes=num_classes)
    model.to(device)

    if args.distributed and args.sync_bn:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)

    criterion = nn.CrossEntropyLoss(label_smoothing=args.label_smoothing)

    if args.norm_weight_decay is None:
        parameters = model.parameters()
    else:
        param_groups = torchvision.ops._utils.split_normalization_params(model)
        wd_groups = [args.norm_weight_decay, args.weight_decay]
        parameters = [{"params": p, "weight_decay": w} for p, w in zip(param_groups, wd_groups) if p]

    opt_name = args.opt.lower()
    if opt_name.startswith("sgd"):
        optimizer = torch.optim.SGD(
            parameters,
            lr=args.lr,
            momentum=args.momentum,
            weight_decay=args.weight_decay,
            nesterov="nesterov" in opt_name,
        )
    elif opt_name == "rmsprop":
        optimizer = torch.optim.RMSprop(
            parameters, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, eps=0.0316, alpha=0.9
        )
    elif opt_name == "adamw":
        optimizer = torch.optim.AdamW(parameters, lr=args.lr, weight_decay=args.weight_decay)
    else:
        raise RuntimeError(f"Invalid optimizer {args.opt}. Only SGD, RMSprop and AdamW are supported.")

    scaler = torch.cuda.amp.GradScaler() if args.amp else None

    args.lr_scheduler = args.lr_scheduler.lower()
    if args.lr_scheduler == "steplr":
        main_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
    elif args.lr_scheduler == "cosineannealinglr":
        main_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            optimizer, T_max=args.epochs - args.lr_warmup_epochs
        )
    elif args.lr_scheduler == "exponentiallr":
        main_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=args.lr_gamma)
    else:
        raise RuntimeError(
            f"Invalid lr scheduler '{args.lr_scheduler}'. Only StepLR, CosineAnnealingLR and ExponentialLR "
            "are supported."
        )

    if args.lr_warmup_epochs > 0:
        if args.lr_warmup_method == "linear":
            warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
                optimizer, start_factor=args.lr_warmup_decay, total_iters=args.lr_warmup_epochs
            )
        elif args.lr_warmup_method == "constant":
            warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(
                optimizer, factor=args.lr_warmup_decay, total_iters=args.lr_warmup_epochs
            )
        else:
            raise RuntimeError(
                f"Invalid warmup lr method '{args.lr_warmup_method}'. Only linear and constant are supported."
            )
        lr_scheduler = torch.optim.lr_scheduler.SequentialLR(
            optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[args.lr_warmup_epochs]
        )
    else:
        lr_scheduler = main_lr_scheduler

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    model_ema = None
    if args.model_ema:
        # Decay adjustment that aims to keep the decay independent from other hyper-parameters originally proposed at:
        # https://github.com/facebookresearch/pycls/blob/f8cd9627/pycls/core/net.py#L123
        #
        # total_ema_updates = (Dataset_size / n_GPUs) * epochs / (batch_size_per_gpu * EMA_steps)
        # We consider constant = Dataset_size for a given dataset/setup and ommit it. Thus:
        # adjust = 1 / total_ema_updates ~= n_GPUs * batch_size_per_gpu * EMA_steps / epochs
        adjust = args.world_size * args.batch_size * args.model_ema_steps / args.epochs
        alpha = 1.0 - args.model_ema_decay
        alpha = min(1.0, alpha * adjust)
        model_ema = utils.ExponentialMovingAverage(model_without_ddp, device=device, decay=1.0 - alpha)

    if args.resume:
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
        if not args.test_only:
            optimizer.load_state_dict(checkpoint["optimizer"])
            lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1
        if model_ema:
            model_ema.load_state_dict(checkpoint["model_ema"])
        if scaler:
            scaler.load_state_dict(checkpoint["scaler"])

    if args.test_only:
        # We disable the cudnn benchmarking because it can noticeably affect the accuracy
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True
        if model_ema:
            evaluate(model_ema, criterion, data_loader_test, device=device, log_suffix="EMA")
        else:
            evaluate(model, criterion, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args, model_ema, scaler)
        lr_scheduler.step()
        evaluate(model, criterion, data_loader_test, device=device)
        if model_ema:
            evaluate(model_ema, criterion, data_loader_test, device=device, log_suffix="EMA")
        if args.output_dir:
            checkpoint = {
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "epoch": epoch,
                "args": args,
            }
            if model_ema:
                checkpoint["model_ema"] = model_ema.state_dict()
            if scaler:
                checkpoint["scaler"] = scaler.state_dict()
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print(f"Training time {total_time_str}")