def handle_legacy_interface()

in torchvision/prototype/models/_utils.py [0:0]


def handle_legacy_interface(**weights: Tuple[str, Union[Optional[W], Callable[[Dict[str, Any]], Optional[W]]]]):
    """Decorates a model builder with the new interface to make it compatible with the old.

    In particular this handles two things:

    1. Allows positional parameters again, but emits a deprecation warning in case they are used. See
        :func:`torchvision.prototype.utils._internal.kwonly_to_pos_or_kw` for details.
    2. Handles the default value change from ``pretrained=False`` to ``weights=None`` and ``pretrained=True`` to
        ``weights=Weights`` and emits a deprecation warning with instructions for the new interface.

    Args:
        **weights (Tuple[str, Union[Optional[W], Callable[[Dict[str, Any]], Optional[W]]]]): Deprecated parameter
            name and default value for the legacy ``pretrained=True``. The default value can be a callable in which
            case it will be called with a dictionary of the keyword arguments. The only key that is guaranteed to be in
            the dictionary is the deprecated parameter name passed as first element in the tuple. All other parameters
            should be accessed with :meth:`~dict.get`.
    """

    def outer_wrapper(builder: Callable[..., M]) -> Callable[..., M]:
        @kwonly_to_pos_or_kw
        @functools.wraps(builder)
        def inner_wrapper(*args: Any, **kwargs: Any) -> M:
            for weights_param, (pretrained_param, default) in weights.items():  # type: ignore[union-attr]
                # If neither the weights nor the pretrained parameter as passed, or the weights argument already use
                # the new style arguments, there is nothing to do. Note that we cannot use `None` as sentinel for the
                # weight argument, since it is a valid value.
                sentinel = object()
                weights_arg = kwargs.get(weights_param, sentinel)
                if (
                    (weights_param not in kwargs and pretrained_param not in kwargs)
                    or isinstance(weights_arg, WeightsEnum)
                    or (isinstance(weights_arg, str) and weights_arg != "legacy")
                    or weights_arg is None
                ):
                    continue

                # If the pretrained parameter was passed as positional argument, it is now mapped to
                # `kwargs[weights_param]`. This happens because the @kwonly_to_pos_or_kw decorator uses the current
                # signature to infer the names of positionally passed arguments and thus has no knowledge that there
                # used to be a pretrained parameter.
                pretrained_positional = weights_arg is not sentinel
                if pretrained_positional:
                    # We put the pretrained argument under its legacy name in the keyword argument dictionary to have a
                    # unified access to the value if the default value is a callable.
                    kwargs[pretrained_param] = pretrained_arg = kwargs.pop(weights_param)
                else:
                    pretrained_arg = kwargs[pretrained_param]

                if pretrained_arg:
                    default_weights_arg = default(kwargs) if callable(default) else default
                    if not isinstance(default_weights_arg, WeightsEnum):
                        raise ValueError(f"No weights available for model {builder.__name__}")
                else:
                    default_weights_arg = None

                if not pretrained_positional:
                    warnings.warn(
                        f"The parameter '{pretrained_param}' is deprecated, please use '{weights_param}' instead."
                    )

                msg = (
                    f"Arguments other than a weight enum or `None` for '{weights_param}' are deprecated. "
                    f"The current behavior is equivalent to passing `{weights_param}={default_weights_arg}`."
                )
                if pretrained_arg:
                    msg = (
                        f"{msg} You can also use `{weights_param}={type(default_weights_arg).__name__}.DEFAULT` "
                        f"to get the most up-to-date weights."
                    )
                warnings.warn(msg)

                del kwargs[pretrained_param]
                kwargs[weights_param] = default_weights_arg

            return builder(*args, **kwargs)

        return inner_wrapper

    return outer_wrapper