def main()

in references/classification/train_quantization.py [0:0]


def main(args):
    if args.weights and PM is None:
        raise ImportError("The prototype module couldn't be found. Please install the latest torchvision nightly.")
    if args.output_dir:
        utils.mkdir(args.output_dir)

    utils.init_distributed_mode(args)
    print(args)

    if args.post_training_quantize and args.distributed:
        raise RuntimeError("Post training quantization example should not be performed on distributed mode")

    # Set backend engine to ensure that quantized model runs on the correct kernels
    if args.backend not in torch.backends.quantized.supported_engines:
        raise RuntimeError("Quantized backend not supported: " + str(args.backend))
    torch.backends.quantized.engine = args.backend

    device = torch.device(args.device)
    torch.backends.cudnn.benchmark = True

    # Data loading code
    print("Loading data")
    train_dir = os.path.join(args.data_path, "train")
    val_dir = os.path.join(args.data_path, "val")

    dataset, dataset_test, train_sampler, test_sampler = load_data(train_dir, val_dir, args)
    data_loader = torch.utils.data.DataLoader(
        dataset, batch_size=args.batch_size, sampler=train_sampler, num_workers=args.workers, pin_memory=True
    )

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=args.eval_batch_size, sampler=test_sampler, num_workers=args.workers, pin_memory=True
    )

    print("Creating model", args.model)
    # when training quantized models, we always start from a pre-trained fp32 reference model
    if not args.weights:
        model = torchvision.models.quantization.__dict__[args.model](pretrained=True, quantize=args.test_only)
    else:
        model = PM.quantization.__dict__[args.model](weights=args.weights, quantize=args.test_only)
    model.to(device)

    if not (args.test_only or args.post_training_quantize):
        model.fuse_model()
        model.qconfig = torch.ao.quantization.get_default_qat_qconfig(args.backend)
        torch.ao.quantization.prepare_qat(model, inplace=True)

        if args.distributed and args.sync_bn:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)

        optimizer = torch.optim.SGD(
            model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay
        )

        lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)

    criterion = nn.CrossEntropyLoss()
    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    if args.resume:
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1

    if args.post_training_quantize:
        # perform calibration on a subset of the training dataset
        # for that, create a subset of the training dataset
        ds = torch.utils.data.Subset(dataset, indices=list(range(args.batch_size * args.num_calibration_batches)))
        data_loader_calibration = torch.utils.data.DataLoader(
            ds, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True
        )
        model.eval()
        model.fuse_model()
        model.qconfig = torch.ao.quantization.get_default_qconfig(args.backend)
        torch.ao.quantization.prepare(model, inplace=True)
        # Calibrate first
        print("Calibrating")
        evaluate(model, criterion, data_loader_calibration, device=device, print_freq=1)
        torch.ao.quantization.convert(model, inplace=True)
        if args.output_dir:
            print("Saving quantized model")
            if utils.is_main_process():
                torch.save(model.state_dict(), os.path.join(args.output_dir, "quantized_post_train_model.pth"))
        print("Evaluating post-training quantized model")
        evaluate(model, criterion, data_loader_test, device=device)
        return

    if args.test_only:
        evaluate(model, criterion, data_loader_test, device=device)
        return

    model.apply(torch.ao.quantization.enable_observer)
    model.apply(torch.ao.quantization.enable_fake_quant)
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        print("Starting training for epoch", epoch)
        train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args)
        lr_scheduler.step()
        with torch.inference_mode():
            if epoch >= args.num_observer_update_epochs:
                print("Disabling observer for subseq epochs, epoch = ", epoch)
                model.apply(torch.ao.quantization.disable_observer)
            if epoch >= args.num_batch_norm_update_epochs:
                print("Freezing BN for subseq epochs, epoch = ", epoch)
                model.apply(torch.nn.intrinsic.qat.freeze_bn_stats)
            print("Evaluate QAT model")

            evaluate(model, criterion, data_loader_test, device=device, log_suffix="QAT")
            quantized_eval_model = copy.deepcopy(model_without_ddp)
            quantized_eval_model.eval()
            quantized_eval_model.to(torch.device("cpu"))
            torch.ao.quantization.convert(quantized_eval_model, inplace=True)

            print("Evaluate Quantized model")
            evaluate(quantized_eval_model, criterion, data_loader_test, device=torch.device("cpu"))

        model.train()

        if args.output_dir:
            checkpoint = {
                "model": model_without_ddp.state_dict(),
                "eval_model": quantized_eval_model.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "epoch": epoch,
                "args": args,
            }
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
        print("Saving models after epoch ", epoch)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print(f"Training time {total_time_str}")