def forward()

in models/criterion.py [0:0]


    def forward(self, preds, targets, weight=None):
        if isinstance(preds, list):
            N = len(preds)
            if weight is None:
                weight = preds[0].new_ones(1)

            errs = [self._forward(preds[n], targets[n], weight[n])
                    for n in range(N)]
            err = torch.mean(torch.stack(errs))

        elif isinstance(preds, torch.Tensor):
            if weight is None:
                weight = preds.new_ones(1)
            err = self._forward(preds, targets, weight)

        return err