in evaluate.py [0:0]
def STFT_L2_distance(predicted_binaural, gt_binaural):
#channel1
predicted_spect_channel1 = librosa.core.stft(np.asfortranarray(predicted_binaural[0,:]), n_fft=512, hop_length=160, win_length=400, center=True)
gt_spect_channel1 = librosa.core.stft(np.asfortranarray(gt_binaural[0,:]), n_fft=512, hop_length=160, win_length=400, center=True)
real = np.expand_dims(np.real(predicted_spect_channel1), axis=0)
imag = np.expand_dims(np.imag(predicted_spect_channel1), axis=0)
predicted_realimag_channel1 = np.concatenate((real, imag), axis=0)
real = np.expand_dims(np.real(gt_spect_channel1), axis=0)
imag = np.expand_dims(np.imag(gt_spect_channel1), axis=0)
gt_realimag_channel1 = np.concatenate((real, imag), axis=0)
channel1_distance = np.mean(np.power((predicted_realimag_channel1 - gt_realimag_channel1), 2))
#channel2
predicted_spect_channel2 = librosa.core.stft(np.asfortranarray(predicted_binaural[1,:]), n_fft=512, hop_length=160, win_length=400, center=True)
gt_spect_channel2 = librosa.core.stft(np.asfortranarray(gt_binaural[1,:]), n_fft=512, hop_length=160, win_length=400, center=True)
real = np.expand_dims(np.real(predicted_spect_channel2), axis=0)
imag = np.expand_dims(np.imag(predicted_spect_channel2), axis=0)
predicted_realimag_channel2 = np.concatenate((real, imag), axis=0)
real = np.expand_dims(np.real(gt_spect_channel2), axis=0)
imag = np.expand_dims(np.imag(gt_spect_channel2), axis=0)
gt_realimag_channel2 = np.concatenate((real, imag), axis=0)
channel2_distance = np.mean(np.power((predicted_realimag_channel2 - gt_realimag_channel2), 2))
#sum the distance between two channels
stft_l2_distance = channel1_distance + channel2_distance
return float(stft_l2_distance)